
 

 

 
 

Sof t w ar e M easur ement  
and 

Funct i onal  Pr ogr ammi ng 
 
 
 

K laas van  den  Ber g 
 
 
 
 
 
 
 
 

PhD Thes is 
J une 23, 1995 

Un i ver si t y  of  Tw en t e 
 

 



 

 
CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 
 
Berg, Klaas Gerrit van den 
 
Software Measurement and Functional Programming 
Thesis University of Twente Enschede 
ISBN 90-9008251-4 
Subject headings: software measurement / functional programming 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis has been approved by 
Prof. dr. ir. A.J.W. Duijvestijn, University of Twente 
Prof. dr. N.E. Fenton, City University, London 
Dr. P.M. van den Broek, University of Twente 
 
 



 i 

 

Abstract 
 

 

Software metrics have been investigated for the assessment of programs writ-
ten in a functional programming language. The external attribute of programs 
considered in this thesis is their comprehensibility to novice programmers. 
This attribute has been operationalized in a number of experiments. The in-
ternal attribute of software which is examined is the structure. Two models for 
the structure of software have been employed: callgraphs and flowgraphs. The 
proposed control-flow model captures the operational semantics of function 
definitions. The objective measurement of the attributes has been supported 
by tools. The validation of structure metrics has been addressed in certain ex-
periments for programming-in-the-small. The structure of type expressions in 
functional programs has been analysed in a case study. A simple framework 
for software metrication proved to be useful. The validation of metrics has 
been linked with axioms from the representational measurement theory. The 
control-flow model for functional programs showed its value in the set-up of an 
experiment regarding the influence of the structure on the comprehensibility. 
A programming style rule on the use of guards in function definitions has been 
validated by the findings in this experiment.  



ii Contents 



Contents iii 

 
 

Contents 
 
 
 
 
 
Summary 1 

1. General Introduction 3 

PART A : THE CONTEXT 11 

2. Teaching Functional Programming to First-Year Students  13 
2.1 Introduction 13 

2.1.1 Motivation 14 
2.1.2 The students 14 

2.2 The computer programming course 15 
2.2.1 Functional Programming 16 
2.2.2 Imperative Programming 17 
2.2.3 Programming techniques 18 
2.2.4 Instructional material 19 

2.3 Evaluations 20 
2.3.1 Observations 20 
2.3.2 Problems 21 
2.3.3 Functional versus imperative programming  24 

2.4 Programming project 27 
2.4.1 Organisation 27 
2.4.2 Railway information system 27 
2.4.3 Experience 29 
2.4.4 Role of functional programming 30 

2.5 Conclusion 31 

3. Syntactic Complexity Metrics and the Readability of Functional  
  Programs  33 

3.1 Introduction 33 
3.2 Software Metrics 35 



iv Contents 

3.2.1 Halstead and McCabe Metrics 35 
3.2.2 Metrics for Pascal and Miranda 36 
3.2.3 Automated measurement 38 

3.3 Case Study 38 
3.4 Discussion 40 

PART B : MODELLING 43 

4. Modelling Software for Structure Metrics  45 
4.1 Introduction 45 
4.2 Flowgraphs 49 
4.3 Structure graphs 50 
4.4 Structure metrics 54 
4.5 Two small languages 55 
4.6 Conclusion 59 

5. Static Analysis of Functional Programs  61 
5.1 Introduction 61 
5.2 Functional programs 63 

5.2.1 Example program 63 
5.2.2 Structure of function definitions 65 

5.3 Control-flow model 66 
5.3.1 Control-flow in function definitions 66 
5.3.2 Modelling control-flow in function definitions 67 
5.3.3 Control-flow graph and decomposition tree 68 
5.3.4 Flowgraph metrics 70 

5.4 Dependency model 72 
5.4.1 General callgraph 74 
5.4.2 Global callgraph 74 
5.4.3 Local callgraph 76 
5.4.4 Include callgraph 77 
5.4.5 Callgraph metrics 77 

5.5 Miranda analyser 81 
5.5.1 Prometrix 81 
5.5.2 Miranda front end 82 
5.5.3 Metric statistics 83 

5.6 Design of functional programs 84 
5.6.1 Pseudocode 84 
5.6.2 Design callgraph 84 

5.7 Conclusion 86 



Contents v 

PART C : VALIDATION 89 

6. Validation of Structure Metrics: A Case Study  92 
6.1 Introduction 92 
6.2 A framework for validation 94 
6.3 Structure metrics of type expressions 96 

6.3.1 Type expressions 96 
6.3.2 A grammar for type expressions 98 
6.3.3 Alternative grammars 98 
6.3.4 The internal axioms 99 
6.3.5 The external axioms 100 
6.3.6 The metric function 102 

6.4 Validation 102 
6.4.1 Method 103 
6.4.2 Procedure 104 
6.4.3 Results 104 

6.5 Discussion 106 
6.6 Conclusion 106 

7. Axiomatic Testing of Structure Metrics  109 
7.1 Introduction 109 
7.2 The case study 111 
7.3 The theoretical order 112 

7.3.1 The abstraction 113 
7.3.2 The containment relation 114 
7.3.3 Extension of the containment relation and ordinal scale 115 

7.4 The empirical order 116 
7.4.1 Global analysis of the empirical order 117 
7.4.2 Axiomatic analysis of the empirical order 118 

7.5 Discussion 123 

8. Validation in the Software Metric Development Process  125 
8.1 Introduction 125 

8.1.1 The representational measurement theory 127 
8.1.2 The validity network scheme 127 
8.1.3 The case study  128 
8.1.4 Overview 128 

8.2 The generative phase 129 
8.2.1 The substantive domain 129 
8.2.2 The conceptual domain 130 
8.2.3 The methodological domain 132 



vi Contents 

8.2.4 Validities in the generative phase 132 
8.3 The executive phase 134 

8.3.1 Calibration 134 
8.3.2 Prediction 134 
8.3.3 Discussion 135 
8.3.4 Validities in the executive phase 135 

8.4 The interpretative phase 136 
8.4.1 Validities in the interpretative phase 136 

8.5 Relation with other validation approaches 137 

9. Programmers' Performance on Structured versus Nonstructured 
  Function Definitions  139 

9.1 Introduction 139 
9.2 Function definitions 140 
9.3 Control-flow model 143 
9.4 Experiment 147 

9.4.1 Independent variables 147 
9.4.2 Dependent variables 148 
9.4.3 Experimental design 148 
9.4.4 Statistical model 149 
9.4.5 Hypotheses 150 

9.5 Subjects 152 
9.6 Objects 152 
9.7 Procedure 154 
9.8 Results 154 

9.8.1 Outliers 154 
9.8.2 Analysis of variance 155 
9.8.3 Time 156 
9.8.4 Correctness 159 

9.9 Discussion 161 
9.10 Conclusion 164 

10. Conclusion 167 

Samenvatting 173 

References 175 

Index 185 

Curriculum Vitae 189 
 



 1 

 
 

Summary 
 
 
 
In general, a producer is interested in the quality of his product, whether it is 
a software package or, for example, a car. There are quality aspects which are 
important to the user of the product, such as for a car the fuel consumption 
rate. Other quality aspects are relevant to the technicians who have to build 
the product or to maintain it: e.g. the ease of assembling certain parts. Fur-
thermore, the producer will be interested in the cost and duration of the pro-
duction, and the resources needed. Such quality aspects have to be measured 
to allow a comparison with other products and production processes: a particu-
lar fuel consumption rate will be acceptable in certain circumstances. 

A similar situation is encountered in the case of software. There are user 
aspects of quality, for example with respect to the interface and performance, 
and other aspects related to the programmers who have to design and imple-
ment the computer programs. The discipline of software engineering offers 
methods for the design and production of software. The field of software meas-
urement provides approaches to the quantification of quality aspects of soft-
ware, related to the product, the process and the resources. An obvious soft-
ware metric is the size of the program, usually expressed in the number of 
lines of executable code. But there are many other software metrics, and it is 
necessary to be able to decide when to use which metric and how. With these 
metrics, one would like to be able to make an objective assessment of the rela-
tive merits of software products and software development methods. 

This thesis addresses some issues on the quality of software with respect to 
the programmers: the comprehensibility of the program code. A lot of time is 
spent reading and understanding programs in order to remove faults or to 
adapt the program to changed requirements. Many factors in the program code 
affect the comprehensibility of the program, such as the language used, the 
naming of variables, the structure, the indentation, explanatory documenta-
tion, the experience of the programmer, and so on.  

In order to capture a particular quality aspect of programs, usually a model 
is built. In such models, certain details in the program are abstracted. The 
models are used in the definition of software metrics. The models and metrics 
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have to be validated, for example their consistency has to be established. Fur-
thermore, the metric values can be obtained with the use of tools: i.e. another 
computer program is used to analyse the original programs. The tools assure a 
fixed procedure and thus an objective assessment of the quality aspects. 

This thesis focuses on the structure of the code, how it is divided into parts 
- usually called modules - and how the modules are related to each other. This 
aspect of structure is modelled in a callgraph of the program. Another aspect 
studied in this thesis is the control structure: the order in which parts of the 
program will be executed, as prescribed by special language constructs. For 
this aspect, a control-flow graph of the program is used. The metrics are indi-
cators of the complexity of the structure. These models and metrics are de-
scribed in Chapters 4 and 5. A tool for the automated measurement of metrics 
based on these models is described in Chapter 5. 

Two classes of programming languages are considered: the ‘classical’ im-
perative ones, with languages such as Pascal and Modula-2, and the less com-
mon class of functional languages, where Miranda is used as the example. The 
latter is a very powerful mathematics-like language. These languages are used 
in the initial programming courses in Computer Science at the University of 
Twente as described in Chapter 2. One would like to know whether students 
who learn to program in Miranda write better programs than the students who 
learn for example Modula-2; and also: are these Miranda programs easier to 
comprehend than Modula programs? For this comparison, some experiments 
with certain well-known software metrics are described in Chapters 2 and 3. 
Some models, the callgraph and the control-flow graph, that are used for im-
perative languages, are modified for the functional language Miranda as de-
scribed in Chapter 5. 

Once one has obtained metric values, it has to established how they can be 
used. Do they yield the expected ordering of programs, e.g. with respect to 
their comprehensibility? Are there threshold values beyond which the pro-
grams are difficult to understand, or are very error prone? These questions are 
part of the external validation. The validation has been carried out in some 
formal experiments using small programs with first-year students, thus novice 
programmers. They are described in Chapters 6 and 9. The use of measure-
ment theory in the validation is explored in Chapter 7. It is an open question 
whether the results of experiments involving novice programmers and small 
programs can be generalised to expert programmers in the industry working 
on large programs in teams. Several of these validation issues are raised in 
Chapter 8 of this thesis. 
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Chapter 1 
 
 
 

1. General Introduction 

How good is functional programming? This simple question raises many other 
questions, for example:  
• What is functional programming: how different is it from the ‘classical’ im-

perative programming style? 
• Is functional programming good for the development of software: can these 

programs be developed in a shorter time; are functional programs more reli-
able; are such programs easier to maintain? Another question is whether 
the functional programming style is good in teaching programming: is it 
easy to learn; do students write better programs? 

• How can the quality of functional programs be assessed: what are the crite-
ria for reliability and maintainability; how can such attributes be quanti-
fied; can this assessment be done objectively? 

These questions indicate the two themes of this thesis: functional program-
ming and software measurement. First, a short characterisation is given of 
functional programming, and then of software measurement, i.e. that field in 
software engineering which is directed at the objective quantification of soft-
ware attributes. Subsequently, an overview will be given of the topics ad-
dressed in the thesis and the relation between the chapters. 

Functional programming 

Two important programming styles are imperative programming and func-
tional programming. Imperative programming - in languages such as Pascal, 
Modula-2 and Ada - is characterised by the use of variables, commands and 
procedures. A variable refers to a named storage location whose value (con-
tents) can be modified by means of assignment statements. The value of a 
variable is determined by its computational history. 

By contrast, functional programming is characterised by the use of expres-
sions and functions. Expressions are used solely to denote a value. The value of 
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an expression can be derived from the value of its components. There is a sub-
stitutive equality between expressions with the same value. Because of these 
properties functional languages are called referentially transparent: they facili-
tate formal reasoning about functional programs. Expressions may contain 
certain ‘names’ which stand for unknown quantities: different occurrences of 
the same name in the same context refer to the same unknown quantity. Such 
names are usually called ‘variables’, but these variables do not vary, as in 
mathematics (Bird & Wadler, 1988)1. Functional programs contain no side-
effects of any kind. A function call can have no effect other than to compute its 
result. This makes the order of execution irrelevant - since no side-effects can 
change the value of an expression. It relieves the programmer of the burden of 
prescribing the flow of control. 

A representative functional programming language is Miranda2  (Turner, 
1986). Some important characteristics of this language are the following: 
• It allows higher-order functions: functions can be passed as parameter and 

returned as function result. 
• It employs lazy evaluation: it is a parameter mechanism whereby an argu-

ment is evaluated only if its value is actually required, rather than when 
the function is invoked.  

• It uses a polymorphic strong typing system: the type of each expression is 
checked at compile time, with type variables standing for unknown types. 

• It supports the use of patterns in the definition of functions. 
An example of a program in Miranda is explained in Chapter 5 (section 2) of 
this thesis; type expressions are described in Chapters 6 (section 3) and 7 (sec-
tion 2); and patterns in function definitions are described in Chapter 9 (section 
2). 

 
Functional programming has its roots in mathematical logic. One of these 
roots is the lambda calculus developed by Church in the 1930s. Furthermore, 
in defining functions, recursive equations are used, as formalised by Kleene in 
the same period. McCarthy (1960) proposed a mathematical basis for computa-
tion, which was influenced by the lambda calculus and recursive function the-
ory. This culminated in the LISP programming language, which in its pure 
form is the first functional programming language. Interest in functional lan-
guages increased due to the Turing Lecture by Backus (1978). A major devel-
opment was the implementation of Miranda by Turner (1979). Other modern 
functional programming languages are ML, Clean, and Haskell. There are 

                                                 
1  The references are given at the end of the thesis 
2  Miranda is a trademark of Research Software Ltd. 
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several sources providing an account of the history of functional programming 
(e.g. Hudak, 1989; Hughes, 1989; Michaelson, 1989) and programming para-
digms (e.g. Watt, 1990). 

Many claims have been made on the potential of functional programming. 
Functional programming is expected to deliver an important contribution to-
wards the improvement of software development in its role of executable speci-
fications and prototyping.  

 

Software measurement 

Software measurement is a field in software engineering. Three approaches 
have been identified in the field of software engineering research (Basili et al., 
1991): the formal methods approach, the system building approach, and the 
empirical studies approach. In the first approach, software development is 
viewed as a mathematical transformation process. In the system building ap-
proach, the emphasis is on finding better methods for structuring large sys-
tems. In the third approach, experimental software engineering, the emphasis 
is on understanding the strengths and weaknesses of methods and tools in or-
der to tailor them to specific goals of a particular software project. A corner-
stone in this approach is measurement.  

A rather formal definition is as follows: software measurement is the objec-
tive quantification of attributes of software entities: processes, products and 
resources (Fenton, 1991). Software measurement is needed to gain control over 
excessive cost of software, low productivity, and poor quality. The original mo-
tivations in the early 1970s for deriving software measures were almost en-
tirely managerial, resulting in numerous models for the estimation of software 
cost and development effort. This also resulted in measures and models for as-
sessing the productivity of personnel during different software processes in dif-
ferent environments. These models had to consider the quality of the software 
produced, resulting in so-called quality models.  

Like measurement in any other discipline, software measurement has to be 
based on measurement theory (Fenton, 1994). Formally, a measure is an objec-
tive assignment of a number (or symbol) to an entity to characterise a specific 
attribute. Measurement is the process of this mapping to numbers. In mathe-
matics, a metric is a function defined on a pair of entities x and y such that 
with respect to a specific attribute, m(x,y) measures the ‘distance’ between x 
and y. Unfortunately, there are no generally agreed definitions of metric and 
measure. In the thesis, the term software measure is used interchangeably 
with the term software metric. 
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The interest in the expenditure of human resources on the development and 
operation of software systems has manifested itself in attempts to quantify 
software complexity. Complexity is perceived as the ‘root of all evil’ and if only 
it could be reduced this would bring about attendant reductions in all manner 
of software evils: excessive development and testing effort, unreliability, and 
unmaintainability. However, no researchers have yet been able to give an ade-
quate definition of the term complexity (Shepperd & Ince, 1993). Some com-
plexity metrics are considered in this thesis: McCabe's complexity metric in 
Chapter 3, and other flowgraph-based complexity metrics in Chapters 4 and 5. 
Software complexity is believed to be reduced by using development methods 
which provide structure to the process and the products. It is an ‘axiom’ of 
software engineering that a good internal structure yields a good external 
software quality (Fenton, 1991). 

Many software metrics are described in the literature. Not only do these 
metrics aim to measure a wide range of attributes but also there are often 
many irreconcilable metrics all claiming to measure the same attribute such as 
cost, size or complexity. The reason for this state of affairs is commonly attrib-
uted to a general lack of validation of software metrics, i.e. ensuring that the 
metric is a proper numerical characterisation of the claimed attribute.  

Overview 

The research in this thesis can be seen as part of experimental software engi-
neering. The approach to software measurement, based on representational 
measurement theory, is strongly influenced by the work of Fenton et al. (1994), 
especially in the second and third parts of this thesis. Moreover, there is an 
emphasis on software product metrics and their validation.  

Programming in functional languages is considered, as it has been a theme 
of research at the University of Twente (Berne, Duijvestijn & van der Hoeven, 
1985; Joosten, 1989). The research in this thesis originated in an educational 
setting: an answer was required to the question as to which programming 
paradigm, imperative programming or functional programming, is the best 
suited for an initial programming course of first-year Computer Science stu-
dents. The case studies and experiments have been carried out in this context. 
The following problems are addressed: 
• How can aspects of software quality in the two programming paradigms be 

assessed and compared using software metrics ? 
• How can software in a functional programming language be modelled to 

capture structural properties of this software ? 
• How can software models and metrics be validated in experiments based on 

measurement theory ? 
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An overview of the thesis is given in Figure 1.1. There are three parts.  
• In part A, the educational context of the research on software metrics for 

functional programming is given. 
• In part B, the modelling of imperative and functional programs, as used for 

structure metrics, is explored. 
• In part C, the validation of software metrics is investigated in some case 

studies. 
In Chapter 10 some general conclusions of this thesis are presented. 
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Figure 1.1  Overview 
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The main issues in the chapters in part A - the context - are the following: 
 

• In Chapter 2, Teaching Functional Programming to First-Year Students, the 
first experiments with some ad hoc software metrics based on callgraphs are 
described. The metrics have been used for comparing students’ performance 
in writing functional programs versus imperative programs. An outline is 
given of the educational context of the experiments (Joosten, van den Berg 
& van der Hoeven, 1993). 

• In Chapter 3, Syntactic Complexity Metrics and the Readability of Func-
tional Programs, the ‘classical’ software metrics of McCabe and Halstead 
are used in comparing students’ programs in an imperative and functional 
language. A tool for the measurement of these metrics has been based on at-
tributed grammars (van den Berg, 1992). 

 
There are two chapters in part B on modelling of software: 

 
• In Chapter 4, Modelling Software for Structure Metrics, an alternative to 

the software metrics used in Chapter 3 is explored: structure metrics based 
on control-flow graphs for imperative programs. The notion of structure 
graphs is introduced as an extension to the theory (van den Broek & van 
den Berg, 1993). 

• In Chapter 5, Static Analysis of Functional Programs, two graph models are 
employed for defining metrics for functional programs: callgraphs and con-
trol-flow graphs. A metric analyser based on attribute grammars, as in 
Chapter 3, has been developed (van den Berg & van den Broek, 1995a). 

 
The issues related with validation of software metrics in part C are: 

 
• In Chapter 6, Validation of Structure Metrics: A Case Study, type expres-

sions in the functional programming language Miranda are modelled and 
structure metrics are defined. Hypotheses based on internal and external 
axioms have been tested in experiments (van den Berg, van den Broek & 
van Petersen, 1993). 

• In Chapter 7, Axiomatic Testing of Structure Metrics, the testing of axioms 
has been based on the representational measurement theory (van den Berg 
& van den Broek, 1994). Deterministic and probabilistic testing of the em-
pirical order has been compared with a theoretical partial ordering of type 
expressions from Chapter 6. 

• In Chapter 8, Validation in the Software Metric Development Process, an 
outline is given of different types of validities in the development process of 
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software metrics (van den Berg & van den Broek, 1995c). A validation net-
work scheme is combined with the representational measurement approach 
from Chapter 7.  

• In Chapter 9, Programmers’ Performance on Structured versus Nonstruc-
tured Function Definitions, the control-flow model for functional programs 
from Chapter 5 is used in an experimental comparison of the comprehensi-
bility of structured and nonstructured Miranda function definitions (van 
den Berg & van den Broek, 1995b). 

 
This thesis consists of a number of published papers. It reflects research over a 
period of about six years (1989-1995) in the field of software measurement, 
with an emphasis on software written in functional programming languages. 
These papers are included in this thesis only with some minor modifications. 
However, Chapter 8 is a condensed version of the original published text, in 
order to avoid an overlap with Chapter 7. 
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Part A : The Context 
 
 

 
 

Issues 

The initial motivation of the research in this thesis was the search for an ob-
jective justification of the decision to introduce functional programming into 
the first year of the Computer Science curriculum at the University of Twente. 
The question to be answered was: ‘Do students produce better programs when 
they learn functional programming instead of imperative programming?’ This 
question raised two issues: ‘Which criteria can be used to assess objectively the 
quality of programs’, and ‘How to compare quality aspects of programs written 
in different programming paradigms’. 

 
The following quotation characterises the situation seen nowadays in many 
discussions about software engineering methods and programming paradigms, 
and also with respect to Computer Science curricula: 

Much of what we believe about which approaches are the best is based on an-
ecdotes, gut feelings, expert opinions, and flawed research, not on careful, 
rigorous software-engineering experimentation. (Fenton, 1994) 

At the earliest stage of the research for this thesis, some ad hoc criteria for the 
assessment of students programs were defined and used in the experiments. 
The educational setting and the first experiments are described in Chapter 2. 
 
In the subsequent stage, the applicability of software metrics - defined in the 
literature - was investigated. Two of the most popular, the Halstead metrics 
(Halstead, 1977) and McCabe’s cyclomatic complexity metric (McCabe, 1976), 
were used in experiments described in Chapter 3. A problem encountered was 
that these metrics have been defined mainly for imperative languages: there-
fore, a first task was the definition of the metrics for functional programs. 
Moreover, a tool based on attributed grammars was developed for the auto-
mated measurement of the metrics. 
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Program Comprehension 

Before developing and using metrics, one must have a clear idea about the 
purpose of the metric. A Goal-Question-Metric method (Basili & Rombach, 
1988) gives a framework for this issue. The goal and some questions have been 
expressed above. In the research in this thesis, one major issue has been the 
objective assessment of the comprehensibility of programs. Understanding ex-
isting code is one of the more time-consuming tasks in the maintenance of 
software products. A recent survey of models for code understanding is given 
by von Mayrhauser (1994). The models are classified as either top-down mod-
els or bottom-up models. Top-down models emphasise the nature and structure 
of domain knowledge and how it is represented in and mapped onto code and 
documentation information. Bottom-up models build understanding from de-
tail code using control flow and data flow. 
 
Bottom-up models for program comprehension have been used in this thesis. 
Many other factors influencing comprehensibility - i.e., naming, indentation, 
typography (cf. Curtis, 1986) - have not been considered. In Chapter 3, the 
code metrics of Halstead and McCabe have been used as indicators for the 
comprehensibility of programs in Pascal and Miranda. There are critics of 
these metrics however (e.g. Shepperd & Ince, 1994), and there is doubt about 
the applicability of these metrics to program comprehension. This led to the 
investigation of structure metrics. The modelling of software for structure met-
rics are described in part B, and the validation of the structure metrics in Part 
C of this thesis. 
 
As a side effect of our research described above, software metrics have been 
used in investigating the assessment criteria applied in regular student as-
signments in imperative programming courses at the University of Twente 
(Moerkerke et al., 1990). The software quality model developed by Boehm et al. 
(1973) has been utilised to make explicit the criteria applied by lecturers in 
these assessments. The ranking of criteria obtained in the Moerkerke study 
provides a basis for a more objective assessment of programming assignments. 
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Chapter 2 
 
 

 

2. Teaching Functional Programming to First-Year  
     Students 3 

In the period 1986-1991, experiments have been carried out with an introduc-
tory course in computer programming, based on functional programming. Due 
to thorough educational design and evaluation, a successful course has been 
developed. This has led to a revision of the computer programming education in 
the first year of the computer science curriculum at the University of Twente. 
This chapter describes the approach, the aim of the computer programming 
course, the outline and subject matter of the course and the evaluation. Educa-
tional research has been done to assess the quality of the course. 

2.1 Introduction 

There is a growing interest in lazy functional programming languages such as 
Miranda and Haskell. It is therefore obvious to investigate whether an intro-
ductory course in computer programming can be given in a functional pro-
gramming language. Because these languages are so new, there are only a few 
places in the world where functional programming is used in this role. 

Until 1991, the introductory computer programming course at Twente was 
based on imperative languages, that is Pascal and Modula-2. A decision to 
switch to functional programming is rather drastic, and has been taken with 
great care. A period of five years has preceded the introduction, in which ex-
tensive experimentation and evaluation went together with careful planning 
and decision making. The functional programming course has been conducted 
four times in experimental form, with 30 to 40 participants each year. By now, 
the course has found its definitive form, and has been introduced for all com-

                                                 
3 S.M.M. Joosten (Ed.), K.G. van den Berg & G.F. van der Hoeven (1993). Teaching Functional 
Programming to First-Year Students. Journal of Functional Programming, 3(1), 49-65. 



14 Chapter 2 

puter science students at the start of the 1991/92 curriculum. As a conse-
quence, a large amount of didactic experience has been built upon teaching 
functional programming as a first language. 

In this chapter we want to motivate the choice for lazy functional pro-
gramming for the introduction to algorithmic thinking. The new programming 
course is described briefly. The following questions will be answered: 
• What is the aim and the subject matter of the introductory computer pro-

gramming course? 
• Why did we choose for this approach? 
• Which problems occurred and how did we solve them? 

2.1.1 Motivation  

Research on functional programming has been conducted at the University of 
Twente from 1982 onwards. Part of this research was directed towards using 
the functional languages in practice (Joosten, 1989). The idea to introduce our 
own freshmen to computer programming by means of a functional language 
dates back to 1986. Although many thought of it as unrealistic, we could think 
of many reasons why this was a good idea. Some years later many of these 
reasons still stand. We mention the most important ones. 

The concept of algorithm is introduced with a minimum amount of distract-
ing elements such as redundant syntax, details about the order of evaluation, 
and exceptional situations to keep in mind while programming. Much better 
than in imperative languages, a functional language enables you to denote ap-
propriate abstractions. Clear and concise programs can be written that express 
the essence of the algorithm, and nothing more. Such properties have created 
the necessary room in the course to concentrate on design issues rather than 
language details. 

As imperative programming still dominates this field, we also want to edu-
cate our students in an imperative language. We have noted that knowledge of 
two language families at such an early moment improves the attitude of stu-
dents towards programming languages. Uncritical language adoration makes 
place for a more objective attitude. 

Functional programming offers a suitable starting point for many fields, 
such as computer algebra, artificial intelligence, formal language theory, speci-
fication etc., and appealing applications are sooner within the reach of stu-
dents. 
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2.1.2 The students  

The course is designed for freshmen students in computer science. Most of 
them are 18-19 years of age. At high school, all students have taken mathe-
matics and physics classes. Few of them have had previous exposure to com-
puter programming, many have used a computer in one way or another. Since 
Dutch universities do not have admission examinations, the level of the fresh-
men cannot be influenced directly by our department. 

Most of our students find jobs in business information technology (approx. 
50%). The other students find jobs in many different fields, such as process 
control, science education, telematics, research. 

2.2 The computer programming course  

In this section we describe the structure and the contents of the computer pro-
gramming course. After a general introduction, each part is discussed in more 
detail. 

The aim of the course is to introduce students to the concept of algorithm 
and data abstraction for the purpose of designing software on a realistic scale. 
After successful completion of the course, the student must be able 

  
• to design an algorithm solving a practical problem 
• to prove that an algorithm satisfies its specification 
• to reproduce and to apply a number of standard algorithms (e.g. back-

tracking, combinatorial algorithms on graphs, sorting) 
• to design software 'in the large' by means of data abstraction (i.e. modulari-

sation) 
• implement separate modules and integrate them with modules built by fel-

low students to create a correctly functioning system 
 
Formal and practical aspects are involved in this. Students must translate a 
practical problem into an algorithmic notation. At the same time, they must 
apply formal techniques to prove the correctness of an algorithm and to trans-
form it into an equivalent algorithm. Moreover, students are familiarised with 
design aspects. 

The whole course takes one year and consists of three terms. A term con-
sists of 8 weeks of scheduled activities followed by 4-5 weeks of 'free' time to 
prepare and take examinations. In this section, the computer programming 
course is described term by term. Subsequently, the instruction material is ad-
dressed. 
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The form of instruction is similar in each one of the three terms: lectures (8 
weekly sessions of 2 hours), tutorials (12 sessions of 2 hours during 8 weeks) 
and practicals (laboratory assignments) (8 weekly sessions of 4 hours). On the 
average a student spends about 50 hours on self study, involving homework, 
exam preparation, reading, etc. The practicals are obligatory. A student spends 
about 125 hours in total during each term. 

2.2.1 Functional Programming 

In the first term the students get acquainted with algorithms expressed in Mi-
randa (Turner, 1986). The subject matter covers most of Bird and Wadler 
(1988). At the end of this term the students have written many different algo-
rithms in a functional language, the complexity of which is comparable to 
quicksort, tree traversal, folding with minor pitfalls and the like. Also, they 
have designed and built a few larger programs of a more complex nature. Stu-
dents have shown that they can define one function in several different ways, 
for example recursively, with list comprehension or with standard functions. 
Also, students have made several proofs based on structural induction. They 
have diagnosed errors in given definitions. Finally, they have translated a 
number of practical problems to suitable data structures with accompanying 
functions. The remaining skills have been demonstrated in practical work. 
Most of these skills are tested by means of an examination. 

In the tutorials, many small exercises are done to make the theory opera-
tional. The tutorials offer a lot of practice in theoretical issues, such as proof 
techniques. Examination results show that students cope with proofs well. 

In the laboratory students solve realistic problems. The first sessions com-
prise small exercises that are intended to familiarise students with the lan-
guage. These exercises are done individually. Solving 'realistic' problems starts 
about halfway the first term. From that point students work in pairs. There is 
supervision (1 supervisor per 12 students) to prevent a pair of students getting 
stuck for too long. Otherwise, they can just carry on and solve their own prob-
lems. 

The first problem solving assignment is one in which students have to de-
sign the contents of a file containing information about a given situation. This 
file is built as a list of n-tuples, and contains (depending on the concrete as-
signment of each student) family relations, football results, ingredients for 
cooking, and so on. The students have to write a program to provide answers 
to questions like: which teams have lost a football match at home? Such prob-
lems can usually be solved with a 'one-liner' that uses a list comprehension: 
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 lost         :: [footballresult] -> [team] 
 lost results =  [home|(home,visitor,scoreH,scoreV)<-results 
                      ; scoreH < scoreV] 
 

Usually it takes a while for students to discover that the problem can be solved 
in such a simple way. Each student writes a program to answer approximately 
four of such questions. The student has to create an input file with test input, 
and make the whole thing work. This assignment is illustrative for the other 
assignments. Other assignments include a modification of the calendar pro-
gram from Bird and Wadler (1988) according to a given requirements specifi-
cation, interactive programming and writing a program to manipulate tree 
structures. By means of the lab assignments, students develop a reasonable 
experience in problem solving and programming. Compared with the 'old' cur-
riculum, students solve more problems of a more complicated nature. 

The reader may appreciate that we disagree with the popular belief that 
functional programming would be more theoretical (than imperative pro-
gramming). 

2.2.2 Imperative Programming 

In the second term students learn imperative programming. The students 
must learn to write a good, conventional style, imperative program. However, 
in presenting the material we benefit from the abilities acquired in the first 
term. One reason to expose students to a second language early is to prevent 
them from acquiring unmotivated preferences for 'their' language. 

We have chosen Modula-2 instead of Pascal, because Modula-2 offers stan-
dardised support for modularisation. Abstraction being a major issue in this 
course, it is desirable to have a language that supports modularity well. 

The imperative course must ensure that the skills of students with respect 
to imperative programming are at least equal (if not better) than the skills of 
students in the old curriculum. In that sense, this is an ordinary programming 
course. However, the approach is different because one can take advantage of 
the functional programming skills acquired so far. For example, recursion is 
not treated as a separate subject, but is used without introduction. Procedures 
as parameters are used from the very beginning, because students are used to 
higher order functions. Function procedures are used frequently. Functions 
yielding composite types as result are supported, although this is not a stan-
dard Modula-2 facility. Standard operations, such as arrays, lists and trees, 
are offered in reusable modules. These operations correspond, as much as pos-
sible, with operations already known to the students from the first term. By 
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using the built-in operations, students are trained to solve problems at a 
higher level of abstraction. They adopt this style in the way they define their 
own functions. 

As mentioned, abstraction is a big issue in the second term. Students must 
learn to abstract from concrete aspects, and find the right abstraction level to 
express a problem. Either they use or they define the proper procedures to 
reach that level of abstraction. Students learn to lift a set of standard opera-
tions to a new set of standard operations that allows them to solve their prob-
lem adequately. The concept of abstract data type is treated in Miranda and 
Modula-2 in parallel. 

The difference with functional programming is emphasised by reasoning 
about programs in conventional state semantics. Students are taught to reason 
about programs in terms of state assertions (Floyd-Hoare logic). Students 
learn to consider the control flow explicitly, and to make decisions about the 
representation of data. These issues (control flow and data representation) re-
main implicit in the functional world. 

2.2.3 Programming techniques 

In the third term, functional and imperative programming are used in the con-
text of software design. The subject matter in this term consists of two parts. 
The first part is a treatment of programming techniques, standard methods 
and categories of problems. Students learn to use backtracking and branch & 
bound techniques, pattern recognition and parsing, finite automata in dialogue 
construction, sorting and shortest path algorithms. For each of these topics the 
same aspects are treated: 
• standard techniques and algorithms; 
• complexity considerations; 
• relation between functional and imperative programming; 
• data abstraction; 
• documentation. 
In the second part, students carry out a programming project. The students 
are confronted with a system that consists of 10 modules. A prototype system, 
written in Miranda, is available for experimentation purposes. This system is 
written entirely in the functional realm. The students learn about the system 
by studying it, and making their own version of the dialogue specification. 

Then they get a partial implementation of the same system, written in 
Modula-2. Two modules have to be added to this system in order to complete it. 
Certain data structures are implemented 'invisibly', so students are confronted 
directly with the consequences of abstract data types. 
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Finally, the students integrate their own modules with the modules of other 
students, yielding a complete system written by several people independently. 
Section 2.4 on the Programming project contains a detailed description of this 
assignment. 

This approach has advantages over letting students make a full program 
from scratch. In this situation students have to delve into existing software, 
which confronts them with important issues like maintainability, the role of 
specification etc. 

After completion of this third term the student is able: 
• to specify a practical problem in the form of an initial algorithm; 
• to transform the initial algorithm to an efficient algorithm; 
• to convert this algorithm to an imperative implementation; 
• to document the design process. 

2.2.4 Instructional material 

Much effort has been paid to the development of instructional material. Not 
only have we looked carefully at the textbook, but we have also paid a lot of 
attention to other kinds of written material, to support students as well as in-
structors. 

As textbook for the first term we have chosen An introduction to functional 
programming by R. Bird and P. Wadler (Bird & Wadler, 1988). Although we do 
not advocate it for self study, this book has about the right mix of practice and 
theory. We feel it is important to use a textbook that does not deal with im-
plementation of functional languages. 

An alternative (at the time) would have been Wikström (1987). The latter 
has a less formal approach, and therefore it has been considered as less suit-
able for this term. A more recent introductory textbook is by Holyer (1991).4

In the second term, students use lecture notes on programming in Modula-2 
(with previous knowledge of functional programming) (van den Berg, 1992a). 
The book written by Koffman (1988) has been chosen as a reference. In the 
third term we do not use another book, but rely on our own material and the 
books already mentioned. 

A book of exercises has been composed, partly with worked out solutions (op 
den Akker et al., 1992a). This material is a student's companion to Bird and 
Wadler (1988). Scripts have been worked out for all lectures, tutorials and lab 
sessions, making explicit the aim of each session (op den Akker et al., 1992b). 
This is a teacher's manual to the course. The students obtain a copy of the 

                                                 
4 At the time of publishing this thesis we refer to Myers, Clack & Poon, 1993, 1995; Ullman, 1994 
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transparencies used in the lectures, serving as a supplementary text. These 
texts are all in Dutch. 

In the first term students program in Miranda (Turner, 1986) in a UNIX 
environment. The second term the students use Modula-2 in a MS-DOS envi-
ronment, specifically using TopSpeed Modula-2 (Jensen, 1988). In the third 
term both language systems are used. 

2.3 Evaluations 

The development of this course started in August 1986. A five-year plan was 
made for extensive experimentation, leading to the definitive introduction in 
1991. In 1987/88 we started teaching with a group of 24 volunteers, out of 
some 120 freshmen of the faculty of computer science. We found that this 
group had scored 10%  (on average) higher on the mathematics and physics 
examinations in high school. Also, these volunteers scored about 10% better 
than their peers in the other subjects taught in the first year at the university. 
Apparently, this group was far from representative. Therefore, this course 
could be used only for trying out the material. Comparative studies could not 
be done until the following year. In 1988/89 we composed two representative 
groups totalling 48 students. In 1989/90 we proceeded with two groups (in to-
tal 40 arbitrarily chosen students) in this new computer programming course. 
In the last preliminary year, 1990/91, the course has been executed in its de-
finitive form on two groups of 34 students in total. Over these years, the func-
tional programming course has evolved considerably. Student results and ap-
preciation and learning speed have improved considerably. Also, the major 
part of the old imperative curriculum is covered in the second and third term 
of the course. From 1991 onwards, all students (up to 120 per annum) are tak-
ing this course. 

2.3.1 Observations  

Evaluation of the courses has been performed in close co-operation with the 
Educational Research Centre of the university. Regular discussions have been 
held between staff and students, instructors and educational experts and the 
people carrying out the actual teaching. After each term, questionnaires have 
been used to measure opinions and attitudes of students. In the first year of 
experimentation (1987/88) exact time measurements have been performed to 
assess the time spent by students. In the other years a detailed estimate of 
time spending was asked in the questionnaires. 

The students judge the course to be not very difficult compared to the other 
courses in the first year. The rather formal textbook in the English language, 
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which is not native to our (Dutch) students, is not experienced as a problem. 
The time expenditure is in good agreement with the norm (and is even favour-
able compared with the programming courses in the old course). In general the 
students find the course pleasant and useful. 

Another source of information, albeit 'soft', is the experience and the im-
pressions of participants (both students and tutors). From the open remarks 
on the questionnaires, the discussions with students and colleagues and the 
performance of students at the examinations, we have become convinced that 
students can cope with the higher level of abstraction. We think that this is an 
improvement over the classical programming education. The ability to make a 
program work by means of trial and error is less useful to students than it 
used to be. 

Since this is a freshman course, the department is interested to know how 
this course separates the better students from the poor performers. In the new 
course, students are selected much more on their ability to make abstractions. 
In the old course, we have the impression that smart programmers with insuf-
ficient abstraction ability would sometimes pass only because they can make 
programs work. 

2.3.2 Problems  

Over the years, we have encountered problems that have to do with the way in 
which functional programming is taught. Such problems were foreseen. In 
1986, functional programming was taught only as a facultative subject for stu-
dents with reasonable experience in imperative programming. Not much in-
structional material was available in 1986 (cf. Bailes 1989; Savitch 1989), and 
similar courses are mostly of a more recent date. So, the course and the mate-
rial have been developed from scratch. Teaching it to students with no previ-
ous exposure to programming was considered risky, because functional pro-
gramming has a reputation of being difficult. The importance of a freshman 
course for the entire (4-year) curriculum is such that a lot of time was needed 
to experiment and introduce the course. This created the opportunity to ana-
lyse educational problems properly, and think of good solutions. Three of these 
problems are discussed in the following three sections. 

2.3.2.1 Priority and associativity  

Many problems in understanding Miranda expressions in the first courses 
were connected with the priority and associativity-rules and the placing of pa-
rentheses, especially with the 'invisible' function application operator. Stu-
dents have a hard time getting used to the way operators interact with func-
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tion application. For example  f . g x y  is often read as ( ( f . g ) x ) y, whereas it 
really means  f . ( ( g x ) y ) . 

To solve this problem we have introduced special exercises to train this 
ability. Furthermore, we use the @-symbol during the first weeks if we need an 
explicit denotation for function application. This helps when students have 
problems with the implicit presence of the application operator. For students 
who grasp the idea right away, we use normal notations only. Furthermore, we 
tend to draw syntax trees to make the parsing of an expression explicit. The 
role of parentheses is explained in connection with these trees. 
So, f . g  x  y is written as f . g @ x @ y or with parentheses f . ( (g @ x ) @ y) . 
The corresponding syntax tree is drawn in Figure 2.1. 
 
                             . 
                           /   \ 
                          f     @ 
                               /  \ 
                              @    y 
                             /  \ 
                            g    x 
 

Figure 2.1  Syntax tree  

2.3.2.2 Type expressions 

In the beginning we had much trouble with Miranda's types. Students made 
many mistakes, both in the laboratory and on paper. There are several aspects 
of the errors made with type expressions. Before considering solutions to this 
problem, we have made an inventory of these mistakes. The following catego-
ries of mistakes were identified: 
 
Understanding given type expressions 
• The function arrow is given the same associativity as the function applica-

tion:  a → b → c    is read as   ((a → b) → c) 
• The main structure of the type expression is not recognised:  

e.g.   a → b → c    is interpreted as the type of a 3-argument function. 
 
Giving the type of a specific function 
• No parentheses are placed around arguments that are functions 
• Functions with more than one argument are not recognised 
• The result type is replaced by some type expression of the right hand side of 

the definition or omitted at all 
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• Too many restrictions are placed on types, e.g. all types are num.  
• Too few restrictions are placed on types, e.g. all types are polymorphic type 

variables and not bound to specific type. 
 
Miscellaneous errors 
• Errors in understanding type error messages are mostly due to a wrong in-

terpretation of terms used in these messages: cannot unify, cannot apply, 
cannot identify. Frequently, students do not use the actual content of the er-
ror message, but solely the indication of the place where something is 
wrong. 

• Errors due to naming conventions, such as xs and ys for lists. Several stu-
dents think that the computer derives the type [∗] based on these names. 

• Type expressions are mixed with ordinary expressions, like this for example: 
last  [∗] = head (reverse [∗]) 

 

The problems with types were also clearly visible in the evaluation results in 
the first two years of experimentation (van den Berg & Pilot, 1989). 'Giving the 
type of a function' was among the first three subjects in the list of ten most dif-
ficult issues. 

Major adjustments of the course have taken place, based on these observa-
tions. Firstly, we relaxed the requirement that a student should be able to de-
rive the type from an expression. Now we require that the students can write 
(as opposed to derive) the type of their own definitions. In order to give the 
necessary practice and to advocate good programming style, we insist that the 
type is given explicitly with every definition. Interpreting error messages re-
mains a problem. Phrases like ‘cannot unify’, ‘cannot apply’ and ‘cannot iden-
tify’ are explained in an introductory practical assignment, which helps a lit-
tle. As a result of all these measures, the topic of typing has disappeared from 
the top ten of difficult issues. 

2.3.2.3 Computational model 

In the experimental phase of the courses, the students received the functional 
and imperative programming courses in parallel. Interference of both courses 
has been observed, especially in the case of the computational model. The 
computational model for functional programming is based on rewriting and 
lazy evaluation, for imperative programs on memory states and state transi-
tions. Some errors occurred because students used the imperative model in the 
functional programming domain: 
• Some students thought that the definitions in the script should have a par-

ticular order: ‘otherwise the value of a variable is not known’. 
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• They assumed changes in the value of variables by function application; e.g. 
taking the tail of a list ys would change the list, in other words they ex-
pected the effect of an assignment  ys := tail (ys). 

• Some felt the need to store intermediate results, otherwise these results 
would be lost, e.g. they wanted to save the original list before calculating the 
last element with  last xs = head (reverse xs). 

Apparently, some of the misconceptions are induced by imperative language 
use in the functional domain: e.g. names like take, drop, remove, filter could 
imply some (side-) effects on the argument of the function. This interference 
nearly completely disappeared after the imperative programming course has 
been placed after the functional course. 

2.3.3 Functional versus imperative programming 5  

One educational experiment has been conducted which is of particular inter-
est: an experimental comparison of the programming abilities of students who 
have been first exposed to computer programming by means of Miranda versus 
those who followed conventional programming education based on Modula-2. 
Since the functional programming course was given to a part of the total first-
year population, we had an ideal opportunity to do comparative research (van 
den Berg, Massink & Pilot, 1989). 

In the first experimental design (see Table 2.1), there are two equivalent 
groups of first year students in computing science: the mathematics and phys-
ics grades were used as pre-test. The two groups received different treatments: 
the functional programming course (FP) or the imperative programming 
course (IP). Two experimental conditions were provided: time pressure and no 
time pressure. The programming abilities were tested after the course: in the 
post-test the students received a number of assignments on different aspects of 
programming. These tests differed only in the programming language used. 
The number of students N for each condition is given in Table 2.1.  
 
  Post-test 

Group Treatment Time pressure No time pressure 
FP Functional N = 15 N = 14 
IP Imperative N = 11 N = 10 

 Table 2.1  Number of students N in experimental design 1 

                                                 
5 The text and tables in this section of the thesis differ slightly from the original published text 
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Several aspects of the programming ability of students have been tested in the 
given assignments. These abilities are the following: to specify a function; to 
write comments to a function; to write the type of a function; to identify se-
mantic equivalence between different program constructs; and to use struc-
tured data types.  

The F-statistic has been used to test differences between the means of these 
quantities. No significant differences (α = 0.10) have been found for each of 
these abilities in both conditions. 

 
In a subsequent experiment, two assignments were offered with one condition 
only (no time pressure). The first of these assignments (Assignment 1) com-
prised the modification of an existing program. Assignment 2 was the design 
and implementation of a new program for a given specification. The experi-
mental design, with the number of students per condition, is given in Table 
2.2. 
 
  Post-test 

 
Group 

 
Treatment 

Assignment 1: 
Modification 

Assignment 2: 
Design + Implementation 

FP Functional N = 11 N =   8 
IP Imperative N =   9 N = 10 

Table 2.2  Number of students N in experimental design 2  

For the modification assignment (Assignment 1), the following four quantities 
were determined: the number of new local functions; the number of new global 
functions; the number of modified functions; and the percentage of students 
who modified the main function.  

 
  Statistics 
Quantity Group Mean F p 
# New local functions FP 

IP 
0.4 
0.0 

4.6 .045 

# New global functions FP 
IP 

1.5 
0.3 

16.6 .001 

# Modified functions FP 
IP 

0.1 
0.8 

17.0 .001 

Modification main function FP 
IP 

82% 
22% 

9.9 .006 

Table 2.3  Results for modification assignment  
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Again, the F-statistic  has been used to test differences of the means of these 
quantities. The results (means, F-value and p-value) are shown in Table 2.3. 
The differences are significant (α = 0.05). 
 
For the design and implementation assignment (Assignment 2), a program call 
graph has been derived for each solution. The following five quantities were 
determined: the number of user defined functions in the graph; the number of 
levels in the graph (transformed to a tree by removing recursive calls); the 
maximum number of functions directly called by another function; the number 
of functions identified in the design; and the coverage, i.e. the percentage of 
design functions recognisable in the implementation.  

The results are shown in Table 2.4. There was no significant difference 
found between the two groups on the maximum number of functions directly 
called by another function and not on the number of functions identified in the 
design. The differences for the other quantities are significant (α = 0.10). 
 
  Statistics 
Quantity Group Mean F p 
# User defined functions FP 

IP 
6.9 
2.6 

16.4 .001 

# Levels in program graph FP 
IP 

1.8 
0.7 

10.3 .005 

Coverage design/program FP 
IP 

92% 
57% 

3.9 .064 

Table 2.4  Results for design and implementation assignment 

From the results for the modification assignment it can be concluded that stu-
dents in the FP-group (the functional programmers) introduced significantly 
more new functions to accomplish the required modification than students in 
the IP-group (the imperative programmers). The latter realise the required 
new functionality by changing the existing program at the lowest level code. At 
the main level, this change is less frequently visible for these students than for 
students in the FP-group. 

From the results for design and implementation assignment it can be con-
cluded that the correspondence between design and program is significant 
higher for students in the FP-group than in the IP-group. Students in the IP-
group use more levels of abstractions with more functions in their programs 
than students in the FP-group.  

Although it is rather subjective to derive the quality of programs from crite-
ria used above, it could be argued that the results on these experiments give 
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evidence that students in the functional programming group produce programs 
with a better structure than students in the imperative programming group. 

2.4 Programming project 

In this section we describe a programming project that is conducted at the end 
of the third term. It serves the purpose of illustrating the type of assignments 
students do. It allows the reader to form an idea of the level obtained at the 
end of the first year. The description starts with a discussion about the educa-
tional and organisational aspects of the assignment. After that, we show some 
technical details. 

2.4.1 Organisation  

In the second half of the third term, students work on a larger assignment. 
Each student spends 16 hours in the laboratory on this assignment, divided in 
four sessions of four hours each. The work is done in pairs. During the first 
session, the students are confronted with a Miranda prototype of the system. 
In the end, this system will be built by those students in Modula-2. They are 
supposed to experiment with the prototype, to carefully analyse its behaviour, 
and to present the results of their analysis in the form of an external specifica-
tion of the system. 

The next two sessions, eight hours in total, are devoted to the implementa-
tion of parts of the system. The students will have to integrate their work with 
the work of others, so they realise the importance of sticking to the specifica-
tion, test thoroughly and remain on schedule. The external specification is 
used as a starting point. Students do not use the external specification they 
built themselves, for that was handed in earlier. Instead, they all use the same 
specification provided by the supervisor. This annihilates the risk of delay for 
students who have had trouble making the specifications. In this way, stu-
dents skip part of the design trajectory. What they are supposed to do here, is 
just to fill in the design. This requires a passive understanding of the structure 
of the system, the skills required to come to a satisfactory system design by 
themselves are not taught nor trained in this course. 

The final session is for integration of system parts. Four couples of students 
will now merge their material into one complete and working system. 

2.4.2 Railway information system  

The students work on a restricted railway information system. In this section 
we give an overview of the system. We hope to give the reader a feeling for the 
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kind of application we are talking about. This description is not intended to be 
complete. 

The railway information system computes the price of the cheapest ticket 
for a given journey, taking into account possible reduced fares for reduction-
pass holders, group tickets, etc. The system has two important aspects. One is 
the correct functionality: it should collect the proper data on a journey, and 
correctly compute the price of the ticket from these data and the information it 
has stored on the costs of various kinds of tickets. The other aspect is its user 
interface. It should facilitate the presentation of data on a journey, and handle 
errors in the input in a clear and understandable way. Any user should be able 
to consult the system, without much explanation. 
 
 
  ticketPriceSys :: aTable -> aTicketStream -> aPriceStream 
  ticketPriceSys ticketPriceTable 
    = map (ticketPrice ticketPriceTable) 
  ticketPrice    :: aTable -> aTicket -> aPrice 
  ticketPrice table ticket 
    = bp        , if n=1 
    = min2 np gp, otherwise 
      where 
       bp   = basePrice  
                    table 
                    dist 
                    (sinOrRet ticket) 
                    (class ticket) 
                    (fulOrRed ticket) 
       dist = distance table (dep ticket) (dest ticket) 
       np   = bp * n 
       gp   = groupPrice table n  
       n    = numberOfP ticket 
 

Table 2.5  The railway system function 

The two main requirements of the external specification are that it defines the 
functional behaviour of the system, and that it defines the form and the nature 
of the interaction between user and system. The functional behaviour is de-
scribed by means of abstract data types. Students have to realise which opera-
tions are necessary and have to worry about the exact content of these opera-
tions. There is a close relation between the abstract data types in the Miranda 
program and the modules in the Modula-2 implementation. The interaction 
between the user and the system is described by regular expressions over some 
alphabet of events. Both elements in this specification lead to a precise formu-
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lation of pre- and postconditions, which is useful when designing the Modula-2 
code. 

To conclude this account of the railway information system, we present the 
main piece of the functional program: the system function ticketPriceSys 
(Table 2.5). This code was made by a student by way of specifying the interac-
tive behaviour of the system at the global level. Students are expected to pro-
duce such code in the external specification they make in the first session of 
this assignment. 

The presentation of these functions presupposes the introduction of types 
and functions, which can be done at an abstract level (Table 2.6). Somewhere 
the specification must show that the following (abstract) types and functions 
are involved, given the types: aTable, aTicket, aPrice, aNumberOfP, aDistance, 
aStation. 
 
 
 aTicketStream == [aTicket] 
 aPriceStream  == [aPrice] 
 aWay       ::= Single | Return 
 aClass     ::= First  | Second 
 aFare      ::= Full   | Reduced 
 
 dep        :: aTicket -> aStation 
 dest       :: aTicket -> aStation 
 sinOrRet   :: aTicket -> aWay 
 class      :: aTicket -> aClass 
 fulOrRed   :: aTicket -> aFare 
 numberOfP  :: aTicket -> aNumberOfP 
 distance   :: aTable  -> aStation  -> aStation -> aDistance 
 basePrice  :: aTable  -> aDistance -> aWay -> aClass ->  
               aFare   -> aPrice 
 groupPrice :: aTable  -> aNumberOfP -> aPrice 
 

Table 2.6  The types of the functions 

2.4.3 Experience  

In itself, the assignment is not a difficult one. Most of the students will suc-
ceed in the integration of their own part with those of their fellow students. 
However, it turns out to be very illuminating in several aspects. It confronts 
students with their own mistakes, their lack of thorough testing, the problems 
caused by ill-structured code, and so on. It clearly shows the necessity to stick 
to specifications, if you want your part of the system to co-operate with other 
parts. It shows that it is most useful to test parts of the system separately and 
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thoroughly before they are put together. And finally, it confronts students with 
the problems of version management: it happens more than once that they 
start integrating versions of modules which are not the final ones, e.g. because 
they contain material which was put there solely for the purpose of testing. 

It is worthwhile to observe the students as they work. Some of them sit 
down at the keyboard and do 'trial and error' development. Others sit down 
and think everything through, starting from the (given) Miranda prototype 
and the specification down to the Modula-2 code. During the integration ses-
sion, the modules produced by the former students usually contain the prob-
lems, whereas the modules of the 'thinkers' often operate flawlessly. 

The role of functional programming in this assignment is restricted. It is 
true that in this assignment for the first time students see a larger piece of 
software, which performs a useful function, and which is written in Miranda. 
But they do not themselves develop program of comparable size in Miranda. 
The skills in functional programming are used to capture the essence of the 
functional behaviour of a system. 

2.4.4 Role of functional programming  

There are two basically different ways of using a functional program as an in-
termediate step towards an efficient imperative implementation. One way is 
by doing program transformations and the other way is by programming and 
justification. The first 'method' contains the following steps: 
1. to write the functional program 
2. to transform this program by means of correctness preserving steps until 

the program is fully tail recursive without using intricacies. 
3. to rewrite the result (mechanically) into an imperative language. 
 
The second way is much more informal. A functional program is written and 
used as a formal specification. The imperative program is developed 'as usual', 
in which the experience of making the specification makes the big difference in 
the quality of the resulting product. Proof techniques must be used to get an a 
posteriori justification for the program. 

We made the choice for the second way on a rather practical basis: The 
transformational approach requires a greater skill and education than the sec-
ond approach. We have educated students in program transformations to a 
level where they can make proofs. There is no room in the first year program 
to enhance these skills further to a level in which transformational program-
ming becomes feasible. In the current situation, these skills do not belong in 
the first year. This motivates our choice for a 'limited' importance of functional 
programming in the design of software. 
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Students who have built (their share of) the railway information system re-
port that they appreciate what they have learnt: to capture the functionality of 
a system in a concise functional specification that fits on the back of a busi-
ness-card. At the same time they find it useful to have the experience of suc-
cessfully integrating their work with the work of so many other students. Stu-
dents appreciate the value of modules and abstract data types in software de-
sign. This is an issue that is taught better by experience than in the classroom. 

2.5 Conclusion 

The design and implementation of a new computer programming course was 
completed successfully within the original time constraints. 

Based on research done in this period, we conclude that the quality of the 
introductory computer programming course has improved. The students learn 
to handle abstraction as a design tool and are able to describe their problem 
formally. The skills in formal manipulations have improved. Students solve 
more problems that are also more challenging. Because imperative program-
ming is still taught, no problems need to be expected with respect to the con-
nection to other (existing) parts of the curriculum. Passing or failing of stu-
dents depends more on their abstraction skills and less on their coding abili-
ties. Appreciation of students is very high. 
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Chapter 3 
 
 
 

3. Syntactic Complexity Metrics and the Readability  
     of Functional Programs 6 

This chapter reports on the definition and the measurement of the software 
complexity metrics of Halstead (1977) and McCabe (1976) for programs written 
in the functional programming language Miranda. An automated measurement 
of these metrics is described. In a case study, the correlation is established be-
tween the complexity metrics and the expert assessment of the readability of 
programs in Miranda, and compared with those for programs in Pascal. 

3.1 Introduction 

Computer programs are written in order to carry out the solution to a problem 
by a computer. During the construction of programs there is a continual need 
to read and understand the text of programs: for the further development of 
the program to meet new specifications, for the modification of programs to 
correct errors, or to consider programs or program parts for possible reuse. The 
programs can be written in various programming languages, which may differ 
in their expressive power. The expressive power of a language is reflected in 
the ability to write programs that are both succinct and understandable 
(Fleck, 1990). Understandability or readability will be defined as the extent to 
which the function of the program and its components are easily discerned by 
reading the program text (Boehm et al., 1978). We will consider the readability 
of programs written in the functional programming language Miranda 
(Turner, 1986) and the imperative programming language Pascal. 

                                                 
6 K.G. van den Berg (1992). Syntactic Complexity Metrics and the Readability of Programs in a 
Functional Computer Language. In: F.L. Engel, et al. (Eds), Cognitive Modelling and Interactive 
Environments in Language Learning. NATO Advanced Science Institute Series, Berlin: Springer, 
199-206. 
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The basic difference between functional and imperative programming lan-
guages lies in the hiding of the computational model (Petre & Winder, 1990). 
The imperative model incorporates the Von Neuman machine characteristics 
in the notions of assignment, state and effect. A characteristic of this language 
class is the explicit flow of control, e.g. sequencing, selection and repetition. In 
assignments, the value of memory places denoted with variables is changed 
during program execution. This model of operation by change of state and by 
alteration of variable values is also named 'computation by effect'. The func-
tional model is characterised by 'computation by value'. Functions return val-
ues and have no side-effects, and expressions represent values. There is no no-
tion of updatable memory accessible by instruction. The program consists of a 
script with a number of mathematical-like definitions and an expression that 
must be evaluated. Functions can be passed as arguments to other functions 
and can be the result of a function application (higher-order functions). These 
programs possess the property of referential transparency, which means that 
in a fixed context the replacement of a subexpression by its value is completely 
independent of the surrounding expression. Therefore functional programming 
is more closely related to mathematical activities (Bird & Wadler, 1988). 

There is a growing interest in functional programming languages, because 
of their expressive power and the possibility to reason about correctness of 
programs. There are claims on the readability of functional programs, for ex-
ample: 'In many cases the functional programming style yields more elegant 
and comprehensible programs than the imperative programming style' 
(Springer & Friedman, 1990) and 'Functional programming leads to programs 
which are exceptionally clear and concise and to the prospect of greatly in-
creased software reliability and development speed' (Bailey, 1990). In a case 
study on the productivity of programming in a functional programming envi-
ronment, some of these claims have been confirmed (Sanders, 1989). 

Moreover, the learning of programming in a functional programming style 
should have advantages over learning in an imperative style (Springer & 
Friedman, 1990; Bailes & Salzman, 1989). At the University of Twente, first 
year students in Computer Science receive a course in functional program-
ming, which forms the base of the programming curriculum (Joosten & van 
den Berg, 1990). An important aspect of teaching programming is to give feed-
back to the novice programmers on the readability of their programs and in-
termediate products during the design process. This readability can be as-
sessed by teachers. It is also possible to measure internal attributes of pro-
grams based on the syntax of the program text that correlate with the read-
ability of programs. These values can be used in feedback to the students, 
which may be interactively during the program development. The measures of 
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software attributes are usually called software metrics and are described in 
the following section. In a subsequent case study we will report on the correla-
tion between readability and the software metrics for programs in Miranda, 
and compare this with the correlation for programs in Pascal. 

3.2 Software Metrics 

Software metrics are used to assess the process of the construction of software, 
the products of this process, and the use of human and machine resources 
(Conte, Dunsmore & Shen, 1986; Fenton, 1991). We will focus our discussion 
on the use of human resources in the interaction with software. This attribute 
of software is referred to as the psychological complexity (Curtis et al., 1979), 
and we restrict ourselves to the readability or comprehensibility of the pro-
gram text. The computational complexity, i.e. the efficiency of the use of the 
machine resources (time and memory space), will not be considered here. 

There are several software metrics for the static syntactic complexity of 
program text described in the literature. We will use the software metrics 
based on Halstead's Software Science (1977) and the cyclomatic complexity 
number of McCabe (1976). The study of Curtis (1981) shows empirical evidence 
that the complexity metrics of McCabe and Halstead relate to the psychologi-
cal complexity, as expressed in the difficulty in understanding and modifying 
software. The relation between syntactic complexity and cognitive complexity 
has been investigated by Khalil & Clark (1989). Shen, Conte & Dunsmore 
(1983) give a critical review of Software Science. They show that the effort E, 
as defined by Halstead (see below), correlates with the understandability of 
programs. However, the psychological aspects of the Halstead metrics have 
been criticised (Coulter, 1983). 

The software metrics of Halstead and McCabe have been applied mainly to 
programs written in imperative programming languages. We have derived 
these metrics for the functional programming language Miranda. The defini-
tion of these metrics for this language will be given in the section below, fol-
lowed by a description of an automated measurement of the metrics. 

3.2.1 Halstead and McCabe Metrics 

Halstead (1977) proposed in his theory of Software Science that some useful 
measures for computer programs can be derived from four basic metrics: the 
count of unique operands and operators, and their total frequencies. A symbol 
in a program that specifies an action is considered an operator, while a symbol 
used to represent data is considered an operand. Among the derived metrics 
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are the program volume, the level of implementation and the programming ef-
fort.  

The basic metrics are defined as the number of unique operators η1, the 
number of unique operands η2, the total number of operators N1, and the total 
number of operands N2. The vocabulary of a program is defined as η = η1 + η2, 
and the length of a program as the total number of tokens N = N1 + N2. The 
volume (size) of a program is defined as V = N × log2 η. The potential volume 
V* of a program represents the size of the program in its most succinct form. 
Halstead showed that V* = (2 + η2*) × log2 (2 + η2*), where η2* is the number 
of different input/output parameters. The program level, or the level of imple-
mentation, L is the ratio of the potential volume V* and its actual volume V, 
i.e. L = V* / V. The effort to generate a program is defined by the relation E = 
V / L. Other quantities have been defined and relations between these quanti-
ties can be obtained by algebraic manipulation. 

McCabe (1976) developed a measure of software based on the decision 
structure of a program. The program is represented as a graph G with a 
unique entry and exit point. The edges represent branches caused by a deci-
sion, and the nodes represent a piece of code. The metric counts the number of 
linear independent paths through a program and is also called the cyclomatic 
complexity number. This metric is related to the difficulty of testing a pro-
gram. The cyclomatic complexity number is v(G) = e - n + 2. The number of 
edges in the graph is e and the number of nodes is n. It can be shown that v(G) 
is equal to the number of decisions in a program plus one, provided that all de-
cision nodes have outdegree 2. 

3.2.2 Metrics for Pascal and Miranda  

The Halstead and McCabe metrics for the imperative programming language 
Pascal have been used as described by Conte (Conte et al., 1986). All variables 
and constants are counted as operands. The operators are the arithmetic op-
erators, relational operators, boolean operators, procedure and function counts, 
and multiple entities BEGIN END, IF THEN, IF THEN ELSE, WHILE DO, 
FOR DO, REPEAT UNTIL, CASE END, RECORD END, ARRAY OF, SET OF. 
The decision count for the cyclomatic complexity number is based on the occur-
rence of the symbols WHILE, FOR, REPEAT, IF, OTHERWISE, AND, OR, 
PROCEDURE, FUNCTION, PROGRAM, CASE and commas in the CASE 
statement. 

We have developed the Halstead and McCabe metrics for the functional 
programming language Miranda. (Similar metrics have been established by 
Samson et al. (1989), for the languages Hope and OBJ.) We consider constants 
and all identifiers that are not operators as operands. The operators are the 
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standard operators (including the list operators for list construction ":", list 
concatenation "++", list difference "--" and selection from a list "!"), the function 
name in the right hand side (RHS) of function definitions, parameters in a 
compound definition, delimiters in expressions ("[ ]", "( )","..",";",","), and in 
function definitions the symbols "otherwise" and "where".  

The number of decisions has to incorporate the use of patterns in argu-
ments of function definitions, in compound definitions and in list comprehen-
sions (i.e. expressions from the Zermelo Frankel set theory). A function defini-
tion consists of a left-hand side (LHS), the symbol "=" and the right-hand side 
(RHS). 

The cyclomatic complexity number of a script is equal to 1 + the sum of cyc-
lomatic complexity numbers of each function definition. The cyclomatic com-
plexity number of a function definition is equal to the sum of the pattern com-
plexity of the LHS, the number of guards in the RHS, the number of logical 
operators in the RHS, the number of filters in a list comprehension in the 
RHS, and the pattern complexity in a list comprehension in the RHS. The pat-
tern complexity is equal to the number of identifiers in the pattern, minus the 
number of unique identifiers in the pattern, plus the number of arguments 
that are not identifiers. 

We illustrate the determination of these metric values for a small func-
tional program. Suppose we want to calculate a list with all numbers greater 
than 5 of a given list with numbers, e.g. filter (>5) [1,7,2,6] . In Mi-
randa the definition of filter reads as follows, where [] denotes the empty 
list, and (x:xs) denotes an item x at the head of a list of items xs. 
 
 
    filter p []     = [] 
    filter p (x:xs) = x : filter p xs , p x 
                    = filter p xs , otherwise 
 
 

In this example, the Halstead metric values are η1 = 7, N1 = 14, η2 = 3 and N2 
= 11. These values have been derived from the following < operator , frequency 
> tuples: < "( )" , 1 >, < "[ ]" , 2 >, < "," , 1 >, < "otherwise" , 1 >, < ":" , 2 >, < "=" , 
3 >, < "filter" , 4 >. The < operand , frequency > tuples are: < "x ", 3 >, < "xs" , 3 
>, < "p" , 5 >.  We assume η2* = η2 = 3 . The other Halstead quantities can be 
derived from these basic values.  

The calculation of the McCabe metric value proceeds as follows. The num-
ber of arguments that are not identifiers is 2, resulting in a pattern complexity 
of 2. The number of guards is 1. The cyclomatic complexity number is 1 + (1 + 
2) = 4. 
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3.2.3 Automated measurement 

The metrics of Halstead and McCabe are based on the lexical and syntactical 
analysis of the program code. It is possible to use standard tools like a scanner 
and parser to automate the measurement of these metric values. In our study 
we used the Cornell Synthesizer Generator (Reps & Teitelbaum, 1989; Rob-
bers, 1990). A schematic view of the analyser is given in Figure 3.2. (A similar 
metric analyser has been developed by Henry & Goff, 1989.)  
 

Metric description

Program text

Language description

Attributed 
abstract

syntax tree

Evaluated
attributes

Metric
values

 

 Figure 3.2  Schematic view of the software metric analyser 

From a syntactical correct program text an abstract syntax tree is derived us-
ing the parse rules and a language description in the Extended Backus Naur 
Form. The metric values are calculated by means of attribute rules, provided 
in the metric description. For each node of the tree we can determine the com-
plexity from the lower parts in the tree. The attribute rules have been devel-
oped for Pascal and Miranda in order to calculate the Halstead and McCabe 
metrics, and can be extended to other metrics. The output of the generator can 
be used in an auxiliary program to calculate the actual metric values. 

3.3 Case Study 

In the case study we explored the application of the syntactic complexity met-
rics described in the previous sections to programs in the functional program-
ming language Miranda, and we established the correlation between these 
metrics and the readability of the programs. We used programs written in the 
language Pascal for comparison. The programs were taken from two groups of 
first year undergraduate students in Computer Science, after a programming 
course of one term. The (first) experimental group in Miranda and the second 
(control) group in Pascal. The students were asked to extend a existing pro-
gram in the respective language. We compared their modifications of this ref-
erence program. The reference program carried out the conversion of a string 
representing a Roman number, e.g. MCLVII, to the corresponding decimal 
number, 1157. The extension of the program should allow the usual abbrevia-
tions in the input string, such as XL instead of XXXX. A conversion of the 
string MCXLVII should result in the decimal value 1147. 
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The readability of programs was assessed by 11 experts, all lecturers in 
Computer Science. They established a rank-order of readability for 9 modifica-
tions of the reference program in Pascal from the control group, and 8 modifi-
cations in Miranda from the experimental group. The agreement between the 
rankings is given by  Kendall's coefficient of concordance W (Lindeman, Mer-
enda & Gold, 1980). The results are given in Table 3.1. From these rankings 
we calculated the average expert rank of the programs in each group. 

 
Language Number of programs Correlation Significance 

Pascal 9 W = .74 χ2(8) = 65 * 
Miranda 8 W = .50 χ2(7) = 39 * 

 
Notes. The correlation W is Kendall's coefficient of concordance.  
The significance is tested by means of the χ2-test. *p < .001. 

 Table 3.1 Correlation between expert rankings of readability for Pascal and 
Miranda programs 

Using the metric analyser, we determined the values of the software metrics 
for the reference programs and the modified programs in both languages. The 
ratings for the modified programs on Halstead's effort E and McCabe's cyclo-
matic complexity number were converted to rankings, or an average rank in 
the case of equal ratings. The correlation between these rankings and the av-
erage expert rank was calculated with Spearman's rank-order correlation coef-
ficient rs. The values of these correlations are given in Table 3.2. We will 
evaluate the results of this case study in the following section. 
 

Complexity 1 Complexity 2  Correlation Significance 
Extended Pascal programs ( N = 9 ) 

Effort Cycl Compl Number rs = .61 t(7) = 2.01 *** 
Av Expert Rank Effort rs = .90 t(7) = 5.46 **** 
Av Expert Rank Cycl Compl Number rs = .58 t(7) = 1.88 *** 

Extended Miranda programs ( N = 8 ) 
Effort Cycl Compl Number rs = .89 t(6) = 4.78 **** 

Av Expert Rank Effort rs = .38 t(6) = 1.01 * 
Av Expert Rank Cycl Compl Number rs = .56 t(6) = 1.66 ** 

 
Notes. The correlation rs is Spearman's rank-order correlation coefficient.  
The significance is tested by means of the Student t-test. *p<.20 **p<.10  ***p<.05 ****p<.01 

Table 3.2  Correlation between rankings of complexities for Pascal and  
Miranda programs  
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3.4 Discussion 

The metrics of Halstead and McCabe for the static syntactic complexity of pro-
grams in the functional programming language Miranda have been defined 
and the measurement has been automated. In the case study we compared the 
application of these metrics to programs in the functional language Miranda 
and the imperative language Pascal. A ranking of the expert assessment on 
readability was taken as a measure of the psychological complexity. From the 
values of the correlation between these expert rankings, we conclude that 
there is fair agreement between experts about the ranking of programs in Pas-
cal (W = 0.74), but the agreement is low for programs in Miranda (W = 0.50). 
This could mean that there is not as much an accepted standard on readability 
for Miranda programs as for Pascal programs. 

The correlation between the effort rank and the rank on the cyclomatic 
complexity number for the programs in Pascal is rs = 0.61, and for Miranda rs 
= 0.89. Both correlations are significant. The high value for Miranda indicates 
a consistent measurement of the syntactic complexity metrics as developed in 
this study. 

The correlation between the average expert rank and the cyclomatic com-
plexity order for Pascal is rs = 0.58, and for Miranda rs = 0.56. The correlation 
between the average expert rank and the effort order for Pascal is rs = 0.90, 
and for Miranda rs = 0.38. Both correlations for Pascal are high and signifi-
cant, which is in agreement with the literature. The two correlations for Mi-
randa are not significant. Obviously, this could be caused by the small number 
of programs used in this study. There are two reasons which could explain the 
low correlations for Miranda. Firstly, the value on the coefficient of concor-
dance, indicating the agreement between experts on readability, for Miranda 
programs is low (see above). The second reason can be found in a more general 
argument given by Halstead (1977). He pointed to the dual role of the level of 
implementation of a program with respect to the understandability. For an ex-
pert the understandability is proportional to the program level, whereas for a 
novice the understandability is inversely proportional to the program level. In 
other linguistic studies, it was concluded that experienced writers cannot re-
liably predict the readability to novices of text in natural languages (Baker et 
al., 1988). 

Further study of software metrics for functional programming languages is 
required. There is a need to differentiate between metric values for various op-
erators. Especially the use of higher-order functions can result in concise pro-
grams, and the count of such an operator should have a different contribution 
to the complexity than a simple arithmetic operator. It is necessary to estab-
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lish the psychological complexity of each elementary language construct and 
the complexity of the compositions of these constructs in programs. This could 
be carried out in an axiomatic approach as outlined by Fenton (1991), along 
with contributions from measurement theory to software measurement (We-
yuker, 1988; Zuse, 1991). 

The complexity of the program text can be analysed at different linguistic 
levels: at lexical level, i.e. the vocabulary used in the program, at syntactical 
level, i.e. the linguistic structures in the program, and at the level of the pro-
gram text as a whole, including the composition (sequencing and nesting) of 
linguistic structures. In this study we used the parsing of the program text by 
the computer as a model for the parsing by the human reader. The analysis 
should be based on a psychologically plausible parsing model, which is part of 
a cognitive model for the comprehension process. The Halstead metrics and 
McCabe metrics focus on the lexical and syntactic levels, and may not repre-
sent the most adequate levels for measurement of program comprehensibility 
(Card & Glass, 1990). We also have to incorporate the text level of analysis, as 
we see in discussions on readability and linguistic complexity of natural lan-
guage texts (Frazier, 1988). The processing of program text has to be formu-
lated in terms of comprehension of chunks of code and programming plans 
(Davies, 1989; Green & Borning, 1990), and the problem-solving capacities of 
programmers (Curtis, 1979). Furthermore, if we want to compare the under-
standability and the expressive power of programming languages we should 
weigh up metrics for programs and metrics for languages (Sammet, 1981). 

Before metrics can be used in teaching programming as feedback to stu-
dents on their programs, further development of software metrics is necessary 
together with the development of criteria to assess the readability of programs 
written in a functional programming language. 
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Part B : Modelling 
 
 
 

 

Issues 

Many problems with software metrics are due to ill-conceived and poorly ar-
ticulated models that underlie the metrics (Shepperd & Ince, 1994). The at-
tribute to be measured should be made explicit. In Chapter 4, the attribute is 
the ‘structure’ of imperative programs. The traditional flowgraph model has 
been modified to capture nesting on conditional expressions in statements. The 
proposed structure graphs can be decomposed in prime structures by sequenc-
ing and nesting operations, as with traditional control-flow graphs. Software 
structure metrics based on flowgraphs and decomposition trees can also be 
used for structure graphs. In a separate paper (not included in this thesis), the 
approach to software structure metrics has been generalised to arbitrary sets 
of decomposition operations for flowgraphs (van den Broek & van den Berg, 
1995). 
 
Most of the modelling of programs has been carried out in the domain of im-
perative programming. In Chapter 5, the modelling of programs by flowgraphs 
and callgraphs is extended to functional programs. The proposed control-flow 
model captures the operational semantics of Miranda function definitions. 
Both types of abstractions, callgraphs and flowgraphs, are independent of the 
programming paradigm. Software metrics based on these abstractions can be 
used to compare attributes of programs. The modelling of Miranda type ex-
pressions by parse trees is described in part C (Chapters 6 and 7). Modelling 
as part of the metric development process is described in Chapter 8. 

Tools 

Based on the flowgraph model and the callgraph model, a tool has been devel-
oped for the static analysis of Miranda programs. The tool is described in 
Chapter 5. The implementation is based on attributed grammars, as with the 
tool in Chapter 3 for the Halstead and McCabe metrics. This type of analysis is 
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supplementary to other static analyses performed on functional programs, 
such as strictness analysis and the type inference system (Peyton Jones, 1987; 
Plasmeijer & van Eekelen, 1993). 

The use of such tools is quite diverse: for example during the software de-
velopment or in the maintenance phase (e.g. Bache & Bazzana, 1994). They 
are used in reverse engineering and in anomaly checking. In an educational 
setting, these tools can be used to give students feedback on their software de-
velopment process to compare their design and implementation. They have 
been used in assessment of the quality of students’ programs (e.g. Ceilidh: 
Benford et al., 1994). 
 
The modelling of software is an essential stage in establishing assessment cri-
teria for the quality of software. The development of tools is important to as-
sure an objective assessment. However, once this has been achieved, one has to 
answer the question how valid the numbers are, and how these numbers can 
be used for different purposes. In fact, the Goal-Question-Metric paradigm 
(Basili & Rombach, 1988) reverses the order of these activities. In part C of 
this thesis, the issue of validation is addressed, with a case study on Miranda 
type expressions and with an experiment based on the flowgraph model for 
Miranda function definitions.  
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Chapter 4 
 
 
 

4. Modelling Software for Structure Metrics 8 

In the traditional approach to structure software metrics, software is modelled 
by means of flowgraphs. A tacit assumption in this approach is that the struc-
ture of a program is reflected by the structure of the flowgraph. When only the 
flow of control between commands is considered this assumption is valid; it is 
no longer valid however when also the control flow inside expressions is consid-
ered. In this chapter, we introduce structure graphs for the modelling of soft-
ware. Structure graphs can, just as flowgraphs, be uniquely decomposed into a 
hierarchy of indecomposable prime structures. We show how programs in an 
imperative language can be modelled by means of structure graphs in such a 
way that the structure of a program is always reflected by the structure of the 
corresponding structure graph.  

4.1 Introduction 

In the traditional approach to structure software metrics (Fenton, 1991; Fen-
ton & Kaposi, 1987), a program in an imperative language is mapped onto an 
abstract program, whereby program parts without structure are replaced by 
atomic actions; the resulting abstract program is mapped onto a flowgraph, 
and this flowgraph is decomposed into a hierarchy of primes (i.e. irreducible 
flowgraphs), which results in a decomposition tree onto which metric functions 
are applied. Where these metric functions are defined inductively, the metrics 
are called structure metrics. Flowgraphs will be defined formally in section 4.2 
of this chapter. First, we will consider the modelling of imperative program 
fragments by flowgraphs. 

An atomic action in a program is modelled by a P1-flowgraph, which con-
sists of a start node, a stop node, and one edge between these nodes. The flow-

                                                 
8 This chapter is an adaptation of: P.M. van den Broek & K.G. van den Berg (1993). Modelling 
Software for Structure Metrics. Memoranda Informatica 93-12. Enschede: University of Twente. 
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graph for an abstract program is constructed by associating a node with each 
atomic action, adding a stop node, identifying the node for the first atomic ac-
tion as the start node, and drawing arcs from each node to its possible succes-
sors. Here the stop node is a successor for all possible last atomic actions. For 
instance, consider the following abstract program fragment: 
 
 WHILE a DO b END 
 

This program fragment is modelled by the flowgraph D2  in Figure 4.1. 
 

a

b

 

Figure 4.1  Flowgraph D2  of WHILE a DO b END 

Note that the node corresponding to b is a procedure node (has outdegree 1) 
and that the node corresponding to a is not a procedure node. This means that 
on node b another flowgraph can be nested, but on node a this is not possible. 
Consider the following program fragment: 
 
 IF c THEN d ELSE e END  
 

This program fragment is modelled by the flowgraph D1 in Figure 4.2.   
c

ed

 

Figure 4.2  Flowgraph D1 of IF c THEN d ELSE e END 
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Suppose we want to replace b in the program fragment WHILE a DO b END 
by IF c THEN d ELSE e END, resulting in the program fragment: 
 
 WHILE a DO  
      IF c THEN d ELSE e END  
 END 
 

Then, nesting the flowgraph D1 (Figure 4.2) on node b of flowgraph D2 (Figure 
4.1) gives the flowgraph in Figure 4.3, denoted as D2(D1). 
 

ed

a

c

 

Figure 4.3  Flowgraph of WHILE a DO IF c THEN d ELSE e END END 

Suppose we want to replace a  in  WHILE a DO b END   by   c OR d.  
Assuming a ‘lazy’ OR, the construct c OR d  is modelled by the flowgraph D0 
which is given in Figure 4.4.  
 

c

d

 

Figure 4.4  Flowgraph D0  of c OR d 

Now it is not possible to obtain the flowgraph of 
 
 WHILE c OR d DO b END 



48 Chapter 4 

by nesting the flowgraph D0 in Figure 4.4 on node a of the flowgraph D2 in 
Figure 4.1. Instead, the flowgraph for this program, which is given in Figure 
4.5, is a prime flowgraph to be called X1. 
 

d

b

c

 

Figure 4.5  Flowgraph X1  of WHILE c OR d DO b END 

So, in this case the structure of the abstract program is not reflected by the 
structure of the corresponding flowgraph. In order to solve this problem, we 
will define the mapping from programs onto structure graphs, which are flow-
graphs whose start node has outdegree 1. 
 
This chapter is organised as follows. In section 4.2, we will recapitulate the 
theory of flowgraphs and flowgraph decomposition. In section 4.3 we will ex-
plain the notion of structure graph. Structure graphs can, analogous to flow-
graphs, be uniquely decomposed into a hierarchy of prime structure graphs. 
Programs in an imperative language can be modelled by means of structure 
graphs in such a way that the structure of a program is always reflected by the 
structure of the corresponding structure graph. Structure metrics for these 
graphs are discussed in section 4.4. In the last section we consider two small 
example languages; we show how programs in these languages are mapped 
onto structure graphs.9

                                                 
9 This mapping has been implemented, and also the decomposition algorithm for the structure 
graphs, in the functional programming language Miranda. 
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4.2 Flowgraphs 

In this section, we briefly recapitulate the theory of flowgraphs and their de-
composition (Fenton, 1991; Fenton & Kaposi, 1987). We start with the defini-
tion of a flowgraph: 
 
Definition  A flowgraph is a 3-tuple (G,a,z) where G is a directed graph, and a 
and z are nodes of G, called start node and stop node respectively, such that:  
• For each node x of G there is a path in G from a to z via x. 
• The outdegree of z is 0. 
 
The next two definitions specify operations on flowgraphs: 
 
Definition  If F1=(G1,a1,z1) and F2=(G2,a2,z2) are flowgraphs then the sequence 
F1;F2 of F1 and F2 is the flowgraph (G1;G2,a1,z2) where G1;G2 is the directed 
graph which is obtained from the union of G1 and G2 by identifying the nodes 
z1 and a2. 
 
Definition  If F1=(G1,a1,z1) and F2=(G2,a2,z2) are flowgraphs and x is a node of 
G1 with outdegree 1 (called a procedure node) then the nesting F1(F2 on x) is 
the flowgraph (G1(G2 on x),a1,z1) where G1(G2 on x) is the directed graph which 
is obtained from the union of G1 and G2 by deleting the edge whose source is x, 
identifying x and a2, and identifying z2 and the successor of x. 
 
Definition  The flowgraph F2=(G2,a2,z2) is a subflowgraph of the flowgraph 
F1=(G1,a1,z1) if G2 is a subgraph of G1 and z2 is the source of all edges from G2 
to G1\G2. 
 
Definition  The subflowgraph F2=(G2,a2,z2) of the flowgraph F1=(G1,a1,z1) is a 
one-entry subflowgraph if 
• the target of each edge from (G1\G2) ∪ {z2} to G2 is either a2 or z2, and 
• if a1 belongs to G2 then a1=a2 or a1=z2 
 
Definition  The subflowgraph F2=(G2,a2,z2) of the flowgraph F1=(G1,a1,z1) is a 
proper subflowgraph if G1≠G2 and F2 is not one of the two trivial flowgraphs. 
Here, the two trivial flowgraphs are the flowgraph consisting of one node only 
(P0), and the flowgraph consisting of two nodes and one edge (P1). 
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Definition  The proper one-entry subflowgraph F2 of the flowgraph F1 is a 
maximal one-entry subflowgraph of F1 if there exists no proper one-entry sub-
flowgraph F3 of F1 such that F2 is a proper one-entry subflowgraph of F3. 
 
The next two theorems show a way in which each flowgraph can be decom-
posed uniquely into a hierarchy of indecomposable flowgraphs (primes). 
 
Theorem  Each flowgraph F can be written uniquely as a sequence of nonse-
quential flowgraphs F1;F2;..;Fn. 
 
Theorem  Each nonsequential flowgraph F can be written uniquely as a si-
multaneous nesting F0(F1 on x1,F2 on x2,...,Fn on xn), where F1,F2,...,Fn are the 
maximal proper one-entry subflowgraphs of F0. Moreover, F0 is a prime. 
 
The nesting - in the last theorem - is usually denoted as F0(F1, F2,...,Fn), in 
which is abstracted from the nodes onto which the flowgraphs are nested. 
 
An algorithm for the decomposition of flowgraphs is given in Bache & Wilson 
(1988). Note that, according to our definition of one-entry subflowgraphs, a re-
quirement for (G2,a2,z2) to be a one-entry subflowgraph of (G1,a1,z1) is the ab-
sence of edges in G1 from z2 to nodes in G2 other than a2. This requirement is 
absent in the definitions in Fenton (1991), Fenton & Kaposi (1987) and Bache 
& Wilson (1988). Without this requirement, testing for the one-entry property 
in the algorithms above is not sufficient.  

 

4.3 Structure graphs 

As shown in the introduction, a drawback of the traditional way of modelling 
software by means of flowgraphs is that no refinement of conditions can be 
modelled, since conditions do not correspond to procedure nodes, and the op-
eration of nesting is defined for procedure nodes only. The solution of this 
problem will lead to the introduction of a subset of flowgraphs, called structure 
graphs, as will be explained below. 

 
As a first step towards a solution of this problem, we propose to model soft-
ware by flowgraphs in such a way that each atomic action corresponds to a 
procedure node. For instance, IF c THEN d ELSE e END is modelled by the 
flowgraph of  Figure 4.6,  to be called structure graph D1' . 
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c

ed

 

Figure 4.6  Structure graph D1' of IF c THEN d ELSE e END 

Similarly, WHILE a DO b END is modelled by the flowgraph of Figure 4.7, to 
be called structure graph D2' . 
 

  

b

a

    

Figure 4.7  Structure graph D2' of WHILE a DO b END 

Note that there are nodes with outdegree > 1 which do not correspond to 
atomic actions. After Whitty (1988), we call these nodes select nodes.  

For each program, such a new representation as a flowgraph can be ob-
tained by the old one by replacing in the former each node with outdegree > 1 
by a procedure node with an edge to a new selection node. Unfortunately, this 
does not solve our problem. The program WHILE c OR d DO b END would 
correspond to the graph of Figure 4.8: 
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Figure 4.8  Tentative structure graph of WHILE c OR d DO b END 

This is not what we want. Let us consider the flowgraph for c OR d in our 
new model, to be called structure graph D0' ,which is given in Figure 4.9: 

 

d

c

 

Figure 4.9  Structure graph D0' of c OR d 

We want the structure graph for WHILE c OR d DO b END to be the struc-
ture graph D0' for c OR d (Figure 4.9) nested on node a of the structure graph 
D2' for WHILE a DO b END (Figure 4.7). This structure graph is shown in 
Figure 4.10. 
 



Modelling Software for Structure Metrics 53 

  

b

c

d

 

Figure 4.10  Structure graph of WHILE c OR d DO b END 

In general, as the second step to the solution of our problem, we propose to as-
sign graphs which can be interpreted as control flowgraphs only to ‘basic’ pro-
grams, and to assign to other programs graphs which are obtained from the 
graphs of their subprograms, using sequencing and nesting. In section 4.5 we 
illustrate this for two example languages. 
 
We are left with one major problem. The graphs assigned to ‘basic’ programs 
should be primes. However, the graph for IF a THEN b ELSE c END, which 
is given in Figure 4.6, is not a prime; it is a sequence P1;D1 of the prime flow-
graphs P1 and D1. The same is true for the graph in Figure 4.9, which corre-
sponds to the basic program c OR d , which is the sequence P1;D0. The third 
(and final) step to the solution of our problem is therefore to consider only a 
subset of the flowgraphs, called structure graphs. A structure graph is a flow-
graph whose start node is a procedure node. 
 
This choice is justified by the observation that programs should start with an 
action, not with a selection. Note that the flowgraphs in Figure 4.6 and Figure 
4.9 are structure graphs which cannot be decomposed into smaller structure 
graphs, i.e. they are prime structure graphs, respectively D1' and D0'.  

The theory of structure graphs is, fortunately, analogous to the theory of 
flowgraphs. The operations of sequencing and nesting are well-defined on 
structure graphs, and structure graphs can be decomposed uniquely into a hi-
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erarchy of prime structure graphs. An algorithm for the decomposition of 
structure graphs may be obtained from an algorithm for the decomposition of 
flowgraphs in a straightforward way. However, the result of the decomposition 
of a structure graph into prime structure graphs can be quite different from 
the result of the decomposition of the same graph into the traditional prime 
flowgraphs. Consider for instance the graph in Figure 4.11. 
 

   

Figure 4.11  Example graph 

As a traditional flowgraph, its decomposition is a sequence of three prime 
flowgraphs: P1; D1'; D1'. As a structure graph, its decomposition is a nesting of 
the prime structure graph D1' on the prime structure graph D1': i.e., D1'(D1'). 

4.4 Structure metrics 

The prime decomposition of flowgraphs has been used for the definition of the 
important class of structure metrics (Fenton, 1991). These metrics can be de-
scribed completely in terms of the primes and the operations of sequencing and 
nesting. A structure metric m is determined uniquely by the following three 
characteristics: 
1. m(F) for each prime F 
2. a function gn such that m(F1;...;Fn) = gn(m(F1),...,m(Fn)) 
3. a function hF such that m(F(F1,...,Fn)) = hF(m(F1),...,m(Fn)) for each prime F. 
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A structure metric with these properties is called a hierarchical metric. More-
over, if the nesting function h is independent of F then the metric is called a 
recursive metric. So, the class of recursive metrics is contained in the class of 
hierarchical metrics. 

For example, the structure metric depth of nesting md is defined as follows 
(Fenton, 1991): 

 
1. md(P1) = 0  
 for each prime F ≠ P1:  md(F) = 1 
2. md(F1;...;Fn)  = max(md(F1),...,md(Fn)) 
3. md(F0(F1,...,Fn))  = 1 + max(md(F1),...,md(Fn)) 
 
For structure graphs, structure metrics can be defined in the same way. It 
should be kept in mind that the decomposition for structure graphs, differs 
from flowgraphs as used in the structure metrics given above, as discussed in 
the previous section. The metric values need not be the same in both ap-
proaches. E.g., the depth of nesting for WHILE c OR d DO b END in the tra-
ditional modelling (see Figure 4.5) is 1 and in the new model (see Figure 4.10) 
the depth of nesting is 2, i.e. the depth of D2'(D0'). 

4.5 Two small languages 

In this section we consider the mapping from programs of some small 
languages to structure graphs. We do not consider the mapping from programs 
to abstract programs; our languages themselves consist of abstract programs. 
Our first language is given in Table 4.1: 
 

<program>   = PROGRAM <name> ; BEGIN <body> END <name> . 
<body>    = <expression> | <expression> ; <body> 
<expression> = S | WHILE <expression> DO <body> END | 
      IF <expression> THEN <body> ELSE <body> END  
<name>    = <letter> | <letter> <name> 
<letter>    = 'a' | ..... | 'z' 

 Table 4.1 Sample programming language 

A program consists of a body, which equals a sequence of expressions. There 
are three kinds of expressions: the WHILE expression, the IF expression, and 
the expression S. This last expression corresponds to atomic actions. 

The mapping from programs to structure graphs is defined by induction. 
The structure graph of a program is the structure graph of its body. The struc-
ture graph of a body is the sequence of the structure graphs of its expressions. 
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The structure graph of the expression S is the structure graph with two nodes 
and one edge. The structure graphs of a IF expression and an WHILE expres-
sion are the structure graphs of Figure 4.6 and Figure 4.7 respectively, on 
which the structure graphs of their subexpressions are properly nested. 

It is easily shown that each expression is mapped onto a nonsequential 
structure graph. From this it follows that the decomposition tree of the struc-
ture graph of each program can be obtained from the parse tree of the pro-
gram, and vice versa. So, for this language there is no need to construct and 
decompose a structure graph in order to obtain the structure of a program; the 
structure is completely determined by the syntax of the program. This remains 
true when we add more ‘structured’ expressions, like REPEAT-loops, and OR 
and AND expressions. 
 
Our second example language is obtained from the first one by adding labelled 
expressions and a GOTO expression (see Table 4.2): 
 

<program>   = PROGRAM <name> ; BEGIN <body> END <name> . 
<body>    = <expression> | <expression> ; <body> |  
      <label> : <expression> | 
        <label> : <expression> ; <body> 
<expression> = S | WHILE <expression> DO <body> END |  
      IF <expression> THEN <body> ELSE <body> END | 
      GOTO <label> 
<name>    = <letter> | <letter> <name> 
<label>   = <digit>  | <digit>  <label> 
<letter>   = 'a' | ..... | 'z' 
<digit>   = '0' | ..... | '9' 

 Table 4.2  Extended sample programming language 

Since we will not assign a structure graph to a GOTO expression, the mapping 
from programs to structure graphs cannot be defined by induction in this case. 
Informally, the structure graph corresponding to a program in this language is 
obtained by first replacing the GOTO expressions by S and constructing the 
structure graph as in the first example language (forgetting about the labels) 
and then removing the GOTO-nodes by redirecting the incoming arcs for each 
GOTO-node to the start node of the structure graph corresponding to the ex-
pression with the appropriate label. More formally we proceed as follows.  
 
Definition  A generalised structure graph is a 7-tuple consisting of 
• a set N, the elements of which are called nodes, 
• a node a, called the start node, 
• a node z, called the stop node, 
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• a set E of ordered pairs of nodes, the elements of which are called edges, 
• a set L, the elements of which are called labels, 
• a set B of ordered pairs of a label and a node, the elements of which are 

called bindings, 
• a set D of ordered pairs of a node and a label, the elements of which are 

called dangling edges 
 
A structure graph can be seen as a generalised structure graph for which the 
sets L, B and D are empty. Sequencing and nesting are defined for generalised 
structure graphs just as for structure graphs (if dangling edges are treated as 
‘real’ edges). 

A mapping from programs to generalised structure graphs can be defined 
by induction as follows. 

The generalised structure graph of a program is the generalised structure 
graph of its body. The generalised structure graph of a body is the sequence of 
the generalised structure graphs of its (labelled) expressions. The generalised 
structure graph of a labelled expression is the generalised structure graph of 
the expression to which a binding is added consisting of the label and the start 
node. The generalised structure graph of the expression S, of a WHILE expres-
sion and of an IF expression are the structure graphs as in the previous exam-
ple, on which the generalised structure graphs of their subexpressions are 
properly nested. Finally, the generalised structure graph of a GOTO expression 
consists of two nodes, the start node and the stop node, and a dangling edge 
consisting of the start node and the label. 

Having obtained a generalised structure graph for a program, its dangling 
edges can be replaced by ‘real’ edges; their target nodes can be obtained from 
the set of bindings. If no binding for a label is found, the program is not well-
formed. If for all labels bindings are found, either the result is a structure 
graph or the program contains unreachable code. So we have defined a map-
ping from well-formed programs to structure graphs, where the well-formed 
programs are programs without missing labels and without unreachable code. 
The procedure nodes of the structure graph correspond to basic actions and to 
GOTO statements. The nodes corresponding to GOTO statements are indirection 
nodes, and can be removed. Note that the syntax of our language allows a 
GOTO expression as the conditional of a WHILE or an IF expression, but that 
this is impossible for a well-formed program. 

As an example, consider the rather unusual10 program given in Table 4.3: 
 

                                                 
10 For example in Pascal, such a program is not allowed according to the ISO standard 
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 PROGRAM example; 
 BEGIN 
       IF S1 THEN GOTO 1 ELSE S2 END; 
       IF S3 THEN 1:S4 ELSE S5 END 
 END example. 
 

  Table 4.3 Example program 

The structure graph and the (traditional) flowgraph of this program is given in 
Figure 4.12. 
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Figure 4.12  Flowgraph (left) and structure graph (right) of the example  
program in Table 4.3 
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The occurrences of S in the example program have been given indices; these 
indices are used in the graphs to show the correspondence between atomic ac-
tions and graph nodes. The flowgraph of Figure 4.12 is a prime flowgraph; the 
structure graph of Figure 4.12 however is not a prime structure graph: it con-
tains as substructure the sequence of S2 and S3. This is an example where our 
structure graph approach reveals a substructure which remained unnoticed in 
the traditional flowgraph approach. It is also interesting to note that this se-
quential substructure was not explicitly denoted as a sequence in the program.  

4.6 Conclusion 

We have introduced the modelling of programs in terms of structure graphs, 
which are flowgraphs whose start node is a procedure node. Structure graphs 
can, just as flowgraphs, be uniquely decomposed into a hierarchy of indecom-
posable prime structures. It has been shown that structure graphs are better 
suited than flowgraphs to model the structure of programs in an imperative 
language. We have given explicitly the mapping from programs of small exam-
ple languages to structure graphs. 
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Chapter 5 
 
 
 

5. Static Analysis of Functional Programs 11 

In this chapter, the static analysis of programs in the functional programming 
language Miranda is described based on two graph models. A new control-flow 
graph model of Miranda definitions is presented, and a model with four classes 
of callgraphs. Standard software metrics are applicable to these models. A Mi-
randa front end for Prometrix12, a tool for the automated analysis of flow-
graphs and callgraphs, has been developed. This front end produces the flow-
graph and callgraph representations of Miranda programs. Some features of 
the metric analyser  are  illustrated with an example program. The tool pro-
vides a promising access to standard metrics on functional programs. 

5.1 Introduction  

Static analysis of programs has the potential to contribute to the control of 
quality of software. Internal attributes, such as structural properties, meas-
ured in the static analysis, are claimed to have a correlation with external at-
tributes, such as comprehensibility, maintainability and testability. Tradition-
ally, static analysis and related tools focuses mainly on programs written in 
imperative programming languages (Fenton, 1991). In this chapter, two mod-
els for static analysis, control-flow graphs and callgraphs,  will be elaborated 
for the analysis of programs written in the functional programming language 
Miranda (Turner, 1986) with respect to the comprehensibility of programs (Da-
vies, 1993). The measurement and validation of internal attributes on size and 
structure based on these models are addressed. The validation of the models 
with respect to external attributes are subject of a separate study (van den 
Berg & van den Broek, 1995b; see Chapter 9 of this thesis). 

                                                 
11 K.G.van den Berg & P.M. van den Broek (1995). Static Analysis of Functional Programs, In-
formation and Software Technology, 37(4), 213-224. 
12 Prometrix is a product of Infometrix Software 
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Callgraphs are used to model dependencies between program constructs, 
such as functions or modules. Callgraphs are related with hierarchy charts as 
used in several structured design methods (Yourdon & Constantine, 1979). 
They capture the dependencies of objects in the program at different levels of 
abstraction. E.g., one may define a callgraph for dependencies between func-
tions within a module; or dependencies between modules, and so on. The root 
node of the callgraph corresponds to the highest level object. Callgraphs are 
used in static program analysers (Bache, 1990). Callgraphs for Prolog pro-
grams have been given by Fenton & Kaposi (1989). A callgraph model for func-
tional programs in Miranda has been described by Harrison (1993). In this 
chapter, four classes of callgraphs will be introduced. 

There are different aspects of control-flow in functional programming. One 
important aspect is determined by the reduction strategy for the evaluation of 
expressions. In Miranda, the functional programming language studied here, 
this strategy is normal order reduction, also called lazy evaluation (Bird & 
Wadler, 1988). Another aspect of control-flow is related to the syntactical 
structure of the function definitions in programs. This aspect, that usually gets 
little attention, will be addressed in this chapter.   
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Figure 5.1 Elementary flowgraphs and decomposition tree  

Flowgraphs are used for the modelling of control-flow in imperative programs 
(Fenton, 1991). The nodes in the directed graphs correspond to statements in 
the programs, whereas the edges from one node to the other indicate a flow of 
control between corresponding statements. The stop node in a flowgraph has 
outdegree zero, and every node lies on some path from the start node to the 
stop node. The nodes with outdegree equal to 1 are called procedure nodes; all 
other nodes are termed predicate nodes. E.g., an elementary action is modelled 
as flowgraph in Figure 5.1a (referred to as P1); the if-then construct in a pro-
gram is modelled as flowgraph in Figure 5.1b (referred to as D0); the if-then-
else construct is modelled as flowgraph in Figure 5.1c (referred to as D1). 
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Flowgraphs can be concatenated (sequencing) to a new flowgraph; and flow-
graphs can be nested on another. An example of nesting D0 onto D1 at node 6 
in Figure 5.1c, is given in Figure 5.1d. This is denoted as D1(D0), in which is 
abstracted from the node onto which is nested. Associated with any flowgraph 
is a decomposition tree which describes how the flowgraph is built by sequenc-
ing and nesting elementary flowgraphs, such as D0 and D1. The decomposition 
tree of the flowgraph in Figure 5.1d is depicted in Figure 5.1e. 

In order to quantify internal attributes of software, metrics have been de-
fined on flowgraphs, decomposition trees and callgraphs (Fenton, 1991). These 
metrics can be divided into two main classes: size metrics (e.g. number of 
nodes and edges) and structure metrics (e.g. nesting depth and width, based on 
a decomposition in primitive components). Several of the standard metrics will 
be used on the models discussed in this chapter. 

This chapter is organised as follows. First, more details about programs in 
the functional programming language Miranda will be given by explaining an 
example program. Furthermore, the modelling of the control-flow and depend-
encies in the callgraph for functional programs will be elaborated on. The ac-
tual data of some software metrics for the example program will be described. 
The final sections discuss the Miranda analyser and some results obtained 
with this approach. 

5.2 Functional programs 

In this section, some characteristics of programs in the functional language 
Miranda (Turner, 1986; Bird & Wadler, 1988) will be described with an exam-
ple program.  

5.2.1 Example program 

In Table 5.1, an example program, usually called a script, is given. The line 
numbers are added for further explanation.  
The function main (lines 4-7) returns the sum of the j-th through k-th complex 
number in list, in which each complex number is derived from a list of (inte-
ger or real) numbers as follows:   an empty list will give complex number 0 + 
0 i,  a list with one number x will give complex number  x + 0 i, and a list 
with two or more numbers x,y,... will give complex number x + y i. In-
formally, the function main can be specified as follows:  
  
 main j k [c1,...,cj,...,ck,...,cn] = cj + ... + ck 
 

For the given test data (line 10) and with j = 1 and k = 4, the (top) expres-
sion main 1 4 test evaluates to the string "13 + 5 i". 



64  Chapter 5  

|| file complex.m                                           1 
|| main j k list   is the sum of the j-th through k-th      2 
|| complex number in list                                   3 
main ::  num -> num -> [[num]] -> [char]                    4 
main j k list                                               5 
  = showct (sumlist sublist)                                6 
    where sublist = take (k-j+1) (drop (j-1) list)          7 
                                                            8 
|| test data                                                9 
test =  [[4,5],[1,0],[8],[],[2,3,4],[7,8]]                 10 
                                                           11 
|| specification complex numbers                           12 
|| re(rect(a,b)) = a                                       13 
|| im(rect(a,b)) = b                                       14 
                                                           15 
|| type definition complex numbers                         16 
abstype ct                                                 17 
with                                                       18 
   rect   :: (num,num) -> ct                               19 
   re     :: ct -> num                                     20 
   im     :: ct -> num                                     21 
   showct :: ct -> [char]                                  22 
                                                           23 
|| implementation complex numbers                          24 
ct          == [num]                                       25 
rect (a,b)  = [a,b]                                        26 
re [a,b]    = a                                            27 
im [a,b]    = b                                            28 
showct z    = x, if im z = 0                               29 
            = y ++ " i", if re z = 0                       30 
            = x  ++ " + " ++  y  ++ " i", otherwise        31 
              where (x,y) = (shownum(re z), shownum(im z)) 32 
                                                           33 
|| derived operations complex numbers                      34 
plus        :: ct -> ct -> ct                              35 
c1 $plus c2 = rect (re c1 + re c2, im c1 + im c2)          36 
                                                           37 
|| sum of complex numbers in list                          38 
|| each complex number is derived from a list of numbers   39 
sumlist              :: [[num]] -> ct                      40 
sumlist []           = rect(0,0)                           41 
sumlist ([x1,x2]:xss)= c $plus sumlist xss                 42 
                       where c = rect(x1,x2)               43 
sumlist (xs:xss)     = sumlist xss, if #xs = 0             44 
                     = c $plus sumlist xss, if #xs = 1     45 
                     = sumlist ((take 2 xs):xss),otherwise 46 
                        where c = rect(x,0)                47 
                                  where x = hd xs          48 

Table 5.1  Example Miranda program 
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For complex numbers, an abstract data type is given: the specification as 
comment (lines 12-14) and the type definition of the base operations (lines 17-
22). Any text on a line after two vertical bars is comment (e.g. lines 1-3). In the 
implementation (lines 26-32) a complex number is represented by a list of 
numbers, given by the type synonym symbol == (line 25). The derived opera-
tion plus (line 36) is defined in infix notation (name of the function with a $-
prefix). With the reserved word where the local definitions are indicated (e.g. 
line 7). On line 32, x and y are defined simultaneously in a so called compound 
definition. The other functions in this script (take, drop, shownum, hd, ++ and 
#) are Miranda library functions. 

For each function the type of the function is provided: the name of the func-
tion followed by a double colon and a type expression (e.g. line 4). The right ar-
row → in the type expression denotes a function type.  

The example program could have been programmed more proficiently, es-
pecially the function sumlist, and with a more distinct specification of the 
functions. However, this rather inexpert implementation will be used to exem-
plify several modelling issues. 

5.2.2 Structure of function definitions 

A script consists of a number of definitions. A definition consists of a number 
of clauses. A clause consists of a number of cases, possibly followed by a script 
with the local definitions of that clause. This structure will be illustrated with 
the function sumlist (see Table 5.2). 

 

 sumlist []             = rect(0,0)                                41 
 
 sumlist ([x1,x2]:xss)  = c $plus sumlist xss                      42 
 
                          where  c  = rect(x1,x2)                  43 
 
 
 sumlist (xs:xss)       = sumlist xss, if #xs = 0                  44 
 
                        = c $plus sumlist xss, if #xs = 1          45 
 
                        = sumlist ((take 2 xs) : xss), otherwise   46 
 
                          where  c  = rect(x,0)                    47 
 
                                      where  x  = hd xs            48 

 

Table 5.2  Structure of the definition sumlist 



66  Chapter 5  

The definition sumlist consists of three clauses (starting at line 41, 42 and 44). 
The first clause consists of one case (line 41). The second clause consists of one 
case (line 42), followed by a local script with the definition of c (line 43: single 
clause, single case). The third clause consists of three cases (lines 44-46), fol-
lowed by a local script with the definition of c (line 47: single clause, single 
case with a local script with the definition of x at line 48).  

 

5.3 Control-flow model 

The control-flow, as reflected in the syntactic structure of the function defini-
tions, is determined by the order of the clauses and the patterns, and the order 
of the cases and the guards. A detailed account on pattern-matching and 
guards in Miranda is given by Peyton Jones and Wadler (Peyton Jones, 1987). 
From other aspects of the control-flow in the actual evaluation of expressions, 
such as laziness (Bird & Wadler, 1988), will be abstracted from. 

5.3.1 Control-flow in function definitions 

The clauses are selected by matching the patterns in the arguments. For ex-
ample, the first pattern in the function sumlist (see Table 5.1) is an empty list 
[ ] (line 41); the second pattern ([x1,x2]:xss) is a non-empty list with a head-
element consisting of a list with two elements (line 42). Here, there is a pat-
tern within another pattern. The pattern (xs:xss) in the third clause (line 44) is 
again a non-empty list, but more general than the pattern in the previous 
clause: any head-element will match. The pattern in the first clause will be 
checked first, then the second, and so on. Only if all patterns in the clauses are 
disjoint and exhaustive, the clauses can be written in any order. There are pat-
terns which always match, e.g. the pattern z in the definition of showct (line 
29). If no pattern succeeds there is an error in the definition. 

If a clause is selected, the cases in a clause are selected by the guards of 
each case. There are no guards in the first and second clause. The first guard 
in the third clause (line 44) is the test (#xs=0), the second guard is (#xs=1), the 
last guard (line 46) is 'otherwise' which will succeed always. The topmost 
guard will be checked first, then the second, and so on. E.g., in the second case 
of the function showct (line 30), it is assumed that the first guard resulted in 
the value False, so that in this case (im z ≠ 0). Only if all guards are disjoint 
and exhaustive, the cases can be written in any order. If no guard succeeds, 
which may happen if there is no 'otherwise' guard, in Miranda the following 
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function clause will be checked 13. If there is no other clause there will be a 
program error. 

5.3.2 Modelling control-flow in function definitions 

In the mapping of a program to a model, one has to keep in mind for which 
purpose the model will be used. A model for the testability of a program could 
be different from a model for the comprehensibility (Shepperd & Ince, 1993). 
In the subsequent modelling of the control-flow, internal attributes relevant to 
the external attribute comprehensibility of functional programs have to be cap-
tured. Eventually, this modelling has to be validated. 

For the static analysis, arguments in a function clause with patterns that 
may fail will be modelled as one predicate node with outdegree 2. Patterns 
that never fail consists of just one or more distinct identifiers, e.g. the pattern 
z in the definition of showct (line 29). A pattern that always succeeds will not 
be modelled as a node in the flowgraph. 
In Miranda, common used patterns in function definitions that may fail are:  
• patterns with a constant: real, integer, character, string 
• patterns with constructors: user defined algebraic constructors, or standard 

constructors for a list (line 27,28 and in line 41, 42 of the function sumlist) 
• patterns with the + operator, e.g. n+1 where n is an integer 
• patterns with the list-constructor : , such as in (xs:xss) in line 44 
• multiple occurrences of variables: two or more times the same identifier in 

the patterns 
Multiple patterns, such as in the second clause of sumlist (line 42) or patterns 
in two or more arguments, will be modelled just as one predicate node. More-
over, we will abstract from the actual content of patterns. E.g., the two pat-
terns [ ] and (xs:xss) cover all possible list arguments (the function is total). 
However, both patterns will be modelled with a predicate node, as if they were 
independent. 

Guards will be modelled as predicate nodes with outdegree 2. Again, we  
will abstract from the actual content of the guard. E.g., a guard with just the 
boolean value True, or the boolean expression (1=1), will be modelled as a 
predicate node. Composite guards are modelled just as one predicate node. The 
guard ‘otherwise’ will not be modelled with a node in the flowgraph. 

Expressions other than guards on the right hand side of the function defini-
tion will be modelled just as one procedure node. In the modelling, we will ab-

                                                 
13 In some implementations of functional languages, the program will not proceed with the follow-
ing clause and a program error will be reported 
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stract from the actual content of these expressions, which be may very simple 
(line 27) or more complicated (line 7). 

In this flowgraph modelling of functional programs, there is no recursion 
and there are no iterative constructs, such as the while-do structure in an im-
perative language. In terms of prime flowgraphs, there are no D2 (while-do) 
and D3 (repeat-until) structures. Furthermore, there is no sequencing of flow-
graphs in this model. 

 

[ ]
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patterns guards expressions stop
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T(xs:xss)
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e1 = rect(0,0)

e2 = c $plus sumlist xss

e3 = sumlist xss

e4 = c $plus sumlist xss

e5 = sumlist ((take 2 xs):xss)

 

Figure 5.2  Annotated control-flow graph of the function sumlist 

5.3.3 Control-flow graph and decomposition tree 

From the modelling discussed in the previous section, the control-flow graph 
for the function sumlist is given in Figure 5.2. The four vertical lines indicate 
the kind of nodes in the flowgraph: predicate nodes (outdegree 2) for patterns 
and guards, procedure nodes (outdegree 1) for the expressions, and finally the 
stop node (outdegree 0). For the predicate nodes, the True (T) and False (F) 
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branches are indicated. Note that the lower (False) branch starting at the pat-
tern (xs:xss) is infeasible because either the pattern [ ] or the pattern (xs:xss) 
will succeed: these two patterns are exhaustive. However, as described in the 
previous section, in this model will be abstracted from the actual content of the 
patterns, and the pattern (xs:xss) will be modelled as a predicate node with 
outdegree 2. 

The decomposition tree of flowgraph can be derived by a hierarchical de-
composition in prime flowgraphs (Fenton, 1991). The decomposition tree of the 
function sumlist is given by:  
 D1(D1(D0(D1(D1)))) 

and can be depicted as a tree without branches (cf. Figure 5.1e). 
 
There are simple function definitions resulting in flowgraphs that are not D-
structured (i.e. containing other than D0, D1, and P1-primes). Consider for ex-
ample the following function f (the function funnyLastElt in Peyton Jones, 
1987: p 58): 

The function f returns the last element of its argument list, except that if a 
negative element is encountered then it is returned instead.  
 
 
 f (x:xs) = x, if x < 0       (1) 
 f (x:[]) = x         (2) 
 f (x:xs) = f xs         (3) 
 
 

The function f is a partial function, defined for non-empty lists only. The 
clause numbers are added. The annotated flowgraph of this function definition 
is given in Figure 5.3a. 

The decomposition of this flowgraph is X1(D1(D0)), where X1 is the prime 
given in Figure 5.3b. In imperative languages, this prime is associated with a 
lazy boolean AND-expression in a selection (cf. Fenton & Kaposi, 1987). 

Furthermore, from this example it can be shown that guards interact with 
pattern matching and the order of the clauses. There are 6 permutations of the 
order of the three clauses in the function f. Only two of them, (1,2,3) and 
(2,1,3), give a definition which satisfies the specification. 

An alternative definition of the function f with the same functionality is the 
following function f ' : 
 
     
 f'(x:xs) = x    , if  x < 0  \/  xs = [] 
             = f' xs, otherwise 
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The flowgraph belonging to this function f ' is D-structured; its decomposition 
is D0(D1). The composite guard, in this example consisting of a lazy boolean or-
expression, is modelled  as one predicate node, as has been described in the 
previous section.  
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T

 

Figure 5.3  Annotated control-flow graph of the function f with prime X1 

Whether this alternative definition, with a D-structured flowgraph decom-
position, should be preferred, e.g. with respect to the external attribute com-
prehensibility, to the first definition with the X-prime in its flowgraph decom-
position, has to be established in a separate validation study (van den Berg & 
van den Broek, 1995b; see Chapter 9 of this thesis). 

5.3.4 Flowgraph metrics 

There are a large number of metrics defined on flowgraphs and decomposition 
trees (Fenton, 1991). A selection of flowgraph metrics for the function sumlist 
is given in Table 5.3. A short description of the metrics will be given. The size 
metrics give the number of nodes and edges in the flowgraph. The local struc-
ture metrics give the occurrences and sizes of the primes in the decomposition. 
The overall structure metrics  give some classical measures on flowgraphs: e.g. 
the cyclomatic complexity number of McCabe. Testability metrics can be com-
puted from the decomposition tree provided that the values can be computed 
for the primes as well as for nesting and sequencing (Fenton, 1991). In tools, 
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like Qualms(1988) and Prometrix(1993), the prime decomposition is used in 
the computation of the testability metrics.  
 

Metric Value 
Size Metrics   
– Number of nodes 11 
– Number of edges 15 
Local Structure Metrics   
– Is D-structured   1 
– Occurrences of D0 1 
– Occurrences of D1   4 
– Occurrences of exotic primes 0 
– Biggest prime   4 
– Depth of nesting   5 
Overall Structure Metrics   
– McCabe’s metric   6 
– Prather’s metric 32 
– Basili-Hutchens SynC 12.21 
Testability Metrics   
– Statement testability 5 
– Branch testability   6 

Table 5.3  Flowgraph metrics for the function sumlist 

In the modelling of functional programs, and the special situation with only P1, 
D0 (if-then) and D1 (if-then-else) structures and no sequencing, the following 
testability metrics will give equal values: all-path testing, visit-each-loop path 
testing, simple path testing and branch testing. Therefore, only one of these 
metrics, branch testability, is included in the selected metrics of Table 5.3. If 
'exotic' prime structures are encountered in the flowgraph, here primes other 
than D0, D1 and P1, the testability metrics for these primes have to be added. 

The testability metrics give the number of test cases required in each of the 
testing strategies. E.g., branch testing requires that each edge in the flow-
graph be visited at least once; for the function sumlist a minimum of 6 test 
cases is required. Statement testing requires that each node in the flowgraph 
be visited at least once. The test cases can directly be derived from the flow-
graph (see Table 5.4). Tests 1-5 are the statement tests; tests 1-6 are the 
branch tests. However, from the list-patterns it can be concluded that the con-
ditions for test 6 can never be met (a list-argument will always match one of 
the patterns [] or (xs:xss)). In general, infeasible paths can be introduced in the 
modelling phase as has been described in the previous section. 
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  patterns and guards 
test expression line [ ] [x1,x2] 

: xss 
xs:xss #xs=0  #xs=1 

1 rect(0,0) 41 true - - - - 
2 c $plus sumlist xss 42 false true - - - 
3 sumlist xss 44 false false true true - 
4 c $plus sumlist xss 45 false false true false true 
5 sumlist ((take 2 xs):xss) 46 false false true false false 
6 - - false false false - - 

Table 5.4  Test cases for the function sumlist 

From the analysis of flowgraph and decomposition tree metrics, one may se-
lect functions which surpass certain pre-set threshold values, e.g. on testabil-
ity or size. These functions can be inspected, and if necessary, they can be re-
designed and implemented, resulting in more acceptable metric values. These 
threshold values may depend on the type of project in which the programs are 
going to be used. Functions which produce exotic primes in their flowgraphs 
(not D-structured) can be detected, and subsequent code inspection may reveal 
a bad programming style or error prone code.  

In the previous section, a simple control flow model for Miranda function 
definitions has been described. Application of the model should reveal the need 
of further refinements of the model, such as expansion of multiple patterns, of 
composite guards and of the other expressions. 

5.4 Dependency model 

In this section, the callgraph model for Miranda programs is described. Four 
classes of functions will be distinguished: 
• global functions: functions defined on the top level of the script 
• local functions: functions defined within one of the top level functions, or de-

fined within another local function 
• primitive functions (or operators): these are in Miranda14 the arithmetic op-

erators (+, -, /, *, ^, div, mod), the boolean operators (&, \/, ~, =, >, <), the 
list operators (#, :, ++, --, !), and the function composition operator (.). 

• library functions: functions defined in another script or in the standard li-
brary 

 

                                                 
14 See the Miranda manual 
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A callgraph is a directed graph with nodes corresponding to the functions in a 
program, and edges corresponding to one function calling another. Multiple 
function calls are modelled with one edge in the callgraph. Primitive functions 
and calls to these functions are not included in the callgraphs.  

In the callgraph, one may select any function as root node: a so called 
rooted callgraph is obtained, with all nodes of the callgraph (and corresponding 
edges)  that are reachable from this root node. In the sequel, such a rooted 
callgraph with as root node the function f will be referred to as ‘the callgraph 
from root f ’. 

 
The callgraph model has mainly been used for imperative languages, in tools 
such as Prometrix(1993). Contrary to for example programs in Pascal, in the 
usual Miranda programming practice, there is a heavy reliance on local func-
tions. The number of local functions may easily surpass the number of top 
level functions with an order of magnitude. Even in a small example program 
as given in Table 5.1, there are local functions which may obscure the top level 
dependencies in the program. Therefore, two new classes of callgraphs will be 
introduced: the local callgraph and the global callgraph. The customary call-
graph is partitioned in on one hand the global callgraph, with dependencies 
between the top level functions, and on the other hand local callgraphs for 
each top level function. Furthermore, larger programs are usually split up into 
several scripts. The dependencies between these scripts are modelled in the 
last class: the include callgraph.  
 
Hence, the following four classes of callgraphs are distinguished: 
• general callgraph: the customary graph with calls between the three type of 

functions (locals, globals and library functions) 
• global callgraph: calls between top level functions and library functions (di-

rectly or indirectly via local functions) 
• local callgraph: for each top level function, the calls between this function 

and other top level functions, library functions, and local functions which 
are in scope of the top level function in the root 

• include callgraph: in this callgraph there are no function dependencies, but 
calls between scripts (via the include construct, see section 5.4.4) 

 
Each of these classes of callgraphs will be discussed in turn in the following 
sections. 
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5.4.1 General callgraph  

In the general callgraph the dependencies between the three classes of func-
tions (local, global and library) are modelled. For example, in the general call-
graph with as root the function main (see Figure 5.5), the global, local and li-
brary  functions are: 
• top level functions: main, sumlist, showct, plus, rect, im, re 
• local functions: sublist defined in main (line 7), x in showct (line 32), y in 

showct (line 32), c in the second clause of sumlist (line 43), c in the third 
clause of sumlist (line 47), x in the previous mentioned function c (line 48) 

• library functions: hd, shownum, take, drop 
A function in a general callgraph will be denoted by the plain name of the 
function as it appears in the program. It is optional to include or to exclude the 
library functions. In Figure 5.5, the library functions are shown. 

5.4.2 Global callgraph 

In the global callgraph only top level functions are modelled, and dependencies 
with other top level functions possibly indirectly via local functions. In the 
global callgraph, a top level function will be denoted by the name of the func-
tion and a star-prefix, such as *main; library functions are denoted without 
star. In the global callgraph with as root the function main, the functions are: 
• top level functions: main, sumlist, showct, plus, rect, im, re 
• library functions: hd, shownum, take, drop 
As with the general callgraph, it is optional to include or to exclude the library 
functions. In Figure 5.4, the library functions are not shown. 

 

Figure 5.4  The global callgraph from root main 
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Figure 5.5  The general callgraph from root main 
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5.4.3 Local callgraph  

In the local callgraph of a top level function, the dependencies of this top level 
function and the functions within the function definition are modelled. If an-
other top level function is called in the function, the dependencies of that top 
level function are not part of the local callgraph. On this local level, these other 
top level functions are considered as ‘library’ functions. 

In the local callgraph, the full name of the function will be used for the local 
function, i.e. the path will be the prefix of the name of the function as used in 
the script. The path consists of the global name of the function, the clause 
number in which the local function is defined, and so on, separated by a back-
slash. This full name allows the localisation of the clause in which the local 
function has been defined. In the local callgraph with as root the function sum-
list (see Figure 5.6), the global, local and library  functions are: 
• top level functions: sumlist, showct, plus, rect 
• local functions: c in the second clause of sumlist (\sumlist@2\c); c in the 

third clause of sumlist (\sumlist@3\c); x in the first clause of the function c 
in the third clause of sumlist (\sumlist@3\c@1\x) 

• library functions: hd, take 
Again, it is optional to include or to exclude the library functions. In Figure 
5.6, the library functions are shown. The edge from \sumlist to sumlist implies 
a recursive call of the top level function in the root. 
 

 
 

Figure 5.6  The local callgraph from root sumlist 



Static Analysis of Functional Programs 77  

5.4.4 Include callgraph  

For large scale applications, a program is usually divided into several scripts. 
Functions defined in one script may be used in another script if the first script 
is included in the latter one. In imperative languages, e.g. Modula-2, this can 
be achieved by the IMPORT-declaration. In Miranda this is denoted by the 
construct %include, followed by the name of the file which contains the script. 
In the previous modelling, a function called from another script is considered 
as a library function.  
 

 

Figure 5.7  The include callgraph from root complex.m 

From the include-constructs arises a hierarchy of scripts, which is modelled in 
the include callgraph (in the imperative domain called the module import 
graph; Pomberger, 1984). One abstracts from the actual calls to functions in 
the included script. The example program (given in Table 5.1) could be divided 
into four scripts (see Table 5.8): the file compbas.m with the base operations on 
complex numbers (line 11-32); the file compaux.m with the derived operations 
on complex numbers (line 33-48); the file compdat.m with the test data (line 8-
10). The file complex.m only contains the main application (line 1-7). The in-
clude-constructs are added on lines 1a, 1b, 1c and 33a. The include callgraph 
with as root the script complex.m is given in Figure 5.7. The four edges corre-
spond to the four include-constructs in the scripts. 

5.4.5 Callgraph metrics 

In this section, first some simple size metrics on callgraphs will be considered. 
The number of nodes and the number of edges will be used in the comparison 
of the general, the global and the local callgraphs. Then, other metrics on call-
graphs will be given. 
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In Table 5.5 the number of the functions, i.e. the number of nodes in the 
graphs, are listed for the callgraphs with as root the function main, and the 
callgraphs with as root the function sumlist.  
 
rooted call-
graph 

 # global 
functions 

# local 
functions 

# library 
functions 

# functions  
total 

main 7 6 4 17 
*main 7 0 4 11 
\main 3 1 2 6 
sumlist 5 3 2 10 
*sumlist 5 0 2 7 
\sumlist 3 3 2 8 

Table 5.5  Number of functions in callgraphs from root main and root sumlist  

For the four classes of functions described in section 5.4, there are six types of 
functions calls in callgraphs: 
a. a global function calls another global function 
b. a global function calls a local function 
c. a global function calls a library function 
d. a local function calls a global function 
e. a local function calls another local function 
f.   a local function calls a library function 

In Table 5.6 the number of the function calls, including recursive calls15, 
are listed for the general callgraph with as root the function main, the global 
callgraph from root *main, and the local callgraph from root \main. The same 
properties are given for the function sumlist. 
 

# calls 
 
root 

a.  
global- 
global 

b. 
global- 
local 

c. 
global- 
library 

d. 
local- 
global 

e. 
local- 
local 

f. 
local- 

library 

 
total 

 
main 10 5 1 6 1 5 28 
*main 10 0 5 0 0 0 15 
\main 3 1 0 0 0 2 6 
sumlist 6 2 1 2 1 1 13 
*sumlist 6 0 2 0 0 0 8 
\sumlist 3 2 1 2 1 1 10 

Table 5.6 Number of function calls for callgraphs from root main and sumlist 
                                                 

15 In Prometrix (see section 5.5.1) recursive calls are not counted 
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As can be seen from the number of nodes and edges in these callgraphs, it is 
useful, for functional programs with many local functions, to obtain both the 
global callgraph and the local callgraphs, besides the customary callgraph. 

 
For callgraphs, some standard metrics have been defined (Fenton, 1991; Pro-
metrix, 1993). For each class of callgraphs introduced in the previous section, 
these metrics are applicable. For the general callgraph in Figure 5.5 with as 
root the function main, some of these metrics are given in Table 5.7. The defi-
nitions of the metrics are given in Fenton (1991). A short description will be 
given below. 
 

Metric Value 
Size Metrics   
– Number of functions 16 17  
– Number of function-function 16  paths 27 
– Volume 44 
– Average size 2.59 
Dimensions   
– Maximum depth of calling 4 
– Minimum depth of calling 4 
– Fenton’s width metric 10 
Re-use Metrics   
– Reuse 1 metric 0.65 
– Reuse 2 metric 0.61 
Impurity Metrics   
– Yin and Winchester C metric 11 
– Fenton’s impurity metric (%) 9.17 

Table 5.7  Metrics of the general callgraph from root main 

The volume is the sum of all sizes of functions, where each function's size is 
the number of nodes in its flowgraph. The minimum depth is the length of the 
shortest path from the root node to the farthest node in the graph. The maxi-
mum depth is the longest loop-free path between the root node and any other 
node. Fenton's width gives the maximum number of functions on any level. If 
no function is called more than once by one other function then there is no re-
use. The callgraph is then a pure tree. The reuse metrics give the proportion 
by which the size of the program, in which functions are duplicated that are 
called from different places, exceeds the actual program. 

                                                 
16 In the Miranda analyser (see section 5.5.1) the functions are referred to as modules 
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|| file complex.m                                           1 
%include "compbas"                                         1a 
%include "compaux"                                         1b 
%include "compdat"                                         1c 
|| main j k list  is the sum of the j-th through k-th       2 
|| complex number in list                                   3 
main ::  num -> num -> [[num]] -> [char]                    4 
main j k list                                               5 
  = showct (sumlist sublist)                                6 
    where sublist = take (k-j+1) (drop (j-1) list)          7 
|| file compdat.m                                           8 
|| test data                                                9 
xs =  [[4,5],[1,0],[8],[],[2,3,4],[7,8]]                   10 
|| file compbas.m                                          11 
|| specification complex numbers                           12 
|| re(rect(a,b)) = a                                       13 
|| im(rect(a,b)) = b                                       14 
                                                           15 
|| type definition complex numbers                         16 
abstype ct                                                 17 
with                                                       18 
   rect   :: (num,num) -> ct                               19 
   re     :: ct -> num                                     20 
   im     :: ct -> num                                     21 
   showct :: ct -> [char]                                  22 
                                                           23 
|| implementation complex numbers                          24 
ct          == [num]                                       25 
rect (a,b)  = [a,b]                                        26 
re [a,b]    = a                                            27 
im [a,b]    = b                                            28 
showct z    = x, if im z = 0                               29 
            = y ++ " i", if re z = 0                       30 
            = x  ++ " + " ++  y  ++ " i", otherwise        31 
              where (x,y) = (shownum(re z), shownum(im z)) 32 
|| file compaux.m                                          33 
%include "compbas"                                        33a 
|| derived operations complex numbers                      34 
plus        :: ct -> ct -> ct                              35 
c1 $plus c2 = rect (re c1 + re c2, im c1 + im c2)          36 
                                                           37 
|| sum of complex numbers in list                          38 
|| each complex number is derived from a list of numbers   39 
sumlist               :: [[num]] -> ct                     40 
sumlist []           = rect(0,0)                           41 
sumlist ([x1,x2]:xss)= c $plus sumlist xss                 42 
                       where c = rect(x1,x2)               43 
sumlist (xs:xss)     = sumlist xss, if #xs = 0             44 
                     = c $plus sumlist xss, if #xs = 1     45 
                     = sumlist ((take 2 xs):xss),otherwise 46 
                        where c = rect(x,0)                47 
                                  where x = hd xs          48 

Table 5.8  Example Miranda program with include files  
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The Reuse 1 metric is based on the functions having equal weight; the Reuse 2 
metric sizes each function according to the number of nodes in the flowgraph17. 
The impurity is the amount by which the graph deviates from a pure tree 
structure. The Yin and Winchester C metric is the callgraph equivalent of 
McCabe's metric and measures the number of calls 'branching in'. Fenton's 
impurity metric is a normalised measure, ranging from 0 (when the graph is a 
tree)  to 100. 

As with the control-flow metrics, one can detect functions that exhibit an 
extreme value on some metric. E.g., a high value of impurity metrics may point 
to a bad design, or if the design is good, to program code that strongly deviates 
from the design. 

5.5 Miranda analyser 

In previous research, an analyser has been constructed to obtain the Halstead 
and McCabe-metrics of Pascal programs and Miranda scripts (van den Berg, 
1992). The implementation of this analyser was based on an attributed gram-
mar in the Synthesizer Generator (1989). The present Miranda analyser for 
the flowgraphs and callgraphs is also devised on an attributed grammar. As 
back end of this analyser, the tool Prometrix (1993) is used. This system pro-
vides among others the graphical display of the graphs, the calculation of 
standard metrics on these graphs, and statistical analysis of the metrics. 
There are front ends available to this tool for several, mainly imperative, pro-
gramming languages. The current Miranda front end, accomplishing the mod-
elling described in the previous sections, is the first one for a functional pro-
gramming language. 

5.5.1 Prometrix 

Prometrix (1993) is a tool for the analysis of callgraphs and flowgraphs. The 
three modes of operation are the following: 
• The prepare mode: the front end for the respective programming language is 

invoked to produce the representation of the flowgraphs and the callgraph 
in an intermediate file (the .f file) for the given source code. From this file 
another file is produced with metric values (the .dat file). It is possible to 
process a number of scripts jointly (with the names of their files in a batch 
file), producing a single intermediate file with the representations of flow-
graphs and callgraphs in all these scripts together. 
                                                 

17 In Prometrix (see section 5.5.1) the number of nodes in library functions is taken to be 0. More 
appropriate would be the value 2, the size of a P1 flowgraph, considering a library function as an 
elementary action 
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• The inspect mode: both flowgraphs and callgraphs (from a .f file) can be dis-
played graphically, with their respective metric values. It is optional to dis-
play the library functions. One may select a subgraph, and it is possible to 
prune the graph, i.e. to contract dependencies in one node. One may alter-
nate between nodes in the graphs and the related source code (code view-
ing). An example of a flowgraph is given in Figure 5.8, the flowgraph of the 
function sumlist (cf. the annotated flowgraph in Figure 5.2). 

• The global mode: the metric values can be displayed in different formats (i.e. 
histograms, box plots).  

For further details on the operation of Prometrix, the reader is referred to the 
manual. 
 

 

Figure 5.8  Flowgraph of the function sumlist from Miranda analyser 

5.5.2 Miranda front end 

The two main components of the front end are a pre-processor, and an ‘editor’ 
generated with the Synthesizer Generator (GrammaTech, 1993). The pre-
processor has mainly the following functionality: 
• to add semicolons to account for the offside layout rule in Miranda (Turner, 

1986) 
• to convert ‘literate’ Miranda scripts to ‘normal’ scripts (Turner, 1986) 
• to calculate size metrics: the lines of code, with and without comments/white 

lines.  
The editor derives the flowgraph and callgraph representations as attributes of 
the scripts. For each production in the abstract syntax, the attribute rules pro-
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vide the contribution to the representations of the flowgraphs and the call-
graphs. Two files are generated by the editor: 
• a file (the .f file) with the standard flowgraph and callgraph representation. 

The metrics statistics (in the .dat file) are based on this file 
• a file (the .f.f file) with the standard flowgraph representation and the gen-

eral, global, local and include-callgraph representation18. Figure 5.4 
toFigure 5.8 are examples of the output from the Miranda analyser. 

 
For the flowgraphs and the general callgraphs, the names of the functions are 
encoded with their path: e.g. /sumlist@2/c@1/x. Prometrix will only show the 
part after the last slash. For the global callgraphs, the names of the functions 
are encoded with a star-prefix, e.g. *sumlist. For the local callgraph, the names 
of the functions are encoded with path and inverted slashes, e.g. 
\sumlist@2\c@1\x. Library functions are encoded with just their names as 
they appear in the program text. The names of the files in the include graph 
representation are encoded with a %-prefix. The files with the scripts are proc-
essed in a batch file (see the prepare mode of Prometrix in section 5.5.1). 

5.5.3 Metric statistics 

In the global mode of Prometrix, one can obtain the metric values in different 
formats. A part of a summary statistics table for the script complex.m (Table 
5.1, without include files) is given in Table 5.9. The values of the maximum, 
minimum, mean, standard deviation and median for various metrics are given. 

 
Metric Max Min Mean Std.Dev Median 
Number of nodes 11 2 3.07 2.43 2.00 
Number of edges 15 1 2.71 3.77 1.00 
Biggest prime 4 2 -19 -19 2.00 
Depth of nesting 5 0 0.64 1.34 0.00 
McCabe’s metric 6 1 1.64 1.34 1.00 
State. testability 5 1 1.43 1.12 1.00 
Branch testability 6 1 1.64 1.34 1.00 
Fan-in 4 0 1.57 1.35 1.00 
Fan-out 6 0 2.00 1.73 2.00 
Fan-out ex. libraries 5 0 1.57 1.64 1.50 

Table 5.9  Summary statistics of complex.m (without include files) 
                                                 

18 Aliases (see Miranda manual) are not taken into account 
19 This metric is on an ordinal scale, so this statistical quantity is not appropriate 
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The fan-in gives the number of functions that call a particular function; the 
fan-out is the number of functions that is called by a function. It is optional to 
include or exclude the calls to library functions. The number of functions de-
fined in the example script (Table 5.1) is 14 (thus excluding the library func-
tions); the total number of the nodes in the flowgraphs of these functions is 43. 
Figure 5.8 and Table 5.9 are examples of the output from the Miranda ana-
lyser. 

The summary statistics provide a good objective basis for the comparison of 
different programs, for example in order to make a choice between competitive 
implementations with respect to the testability of the programs. 

5.6 Design of functional programs 

In the previous sections, the modelling and static analysis of programs in 
Miranda have been described. In this section, the analysis will be extended to 
designs of functional programs. Functional languages have been used in soft-
ware development (Joosten, 1989) as executable specifications (Turner, 1985) 
and for prototyping (Henderson, 1986). Miranda programs can be developed in 
a top down manner by the use of stubs. The code can be analysed in the subse-
quent stages of the software development. Structured design in combination 
with prototyping in a functional language has been described by Harrison 
(Harrison, 1993a).  

5.6.1 Pseudocode 

The Miranda metric analyser described in section 5.5 can be used for designs 
with stepwise refinement in pseudocode as described below. The design call-
graphs obtained in this way give the 'uses'-hierarchy as in structure charts 
(Yourdon & Constantine, 1979).  

In the pseudocode, any Miranda language construct can be used, including 
the use of local definitions. However, the code need to be neither executable 
nor type-correct to the Miranda-system. The '=' symbol in the function defini-
tion denotes a 'uses' - relation.  

The example problem of complex numbers from section 5.2 will be used 
again to illustrate the design of a Miranda program with this pseudocode. Two 
steps of refinement are given in Table 5.10.  

5.6.2 Design callgraph 

This design given above can be depicted in a structure chart (see Figure 5.9) 
without interface and procedural annotations. 
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The pseudocode can be offered to the Miranda metric analyser. The ana-
lyser will produce a design callgraph as in Figure 5.4, but now with the de-
pendencies given in the structure chart of the design. The metrics defined on 
callgraphs in section 5.4.5 can be obtained for these design callgraphs as well. 

 
|| A first design in pseudocode: 
 
 main 
 = getSublist 
     convertAllToComplexList 
     sumComplexList 
     showComplex 
 
 convertAllToComplexList 
 = convertOneToComplex 
 
|| A refinement of the first design: 
 
 main  
 = getSublist 
   convertAllToComplexList 
   sumComplexList 
   showComplex 
  
 getSublist list 
 = drop firstpart list 
   take secondpart list 
  
 convertAllToComplexList list 
 = [convertOneToComplex element | element <- list] 
  
 convertOneToComplex list 
 = complex(0,0), if length list = 0 
 = complex(first list, 0), if length list = 1 
 = complex(first list, second list), otherwise 
  
 sumComplexList list 
 = (head list) plus (sumComplexList (tail list)) 
  
 showComplex 
 = showRePart 
   showImPart   

Table 5.10  Design of example program in pseudocode 

From this second design, it is rather trivial to obtain a Miranda program. 
The data structures have to be chosen; the arguments of the functions have to 
be established; subsequently, the type declarations of the functions can be 
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given; and finally the remaining Miranda code of the functions. (Notice that 
this program will differ from the example program in Table 5.1.) Similar op-
erations in the graph can be grouped together in one file, e.g. the operations on 
complex numbers. A modular structure will be obtained such as given in Table 
5.8 (cf. Parnas, 1972). 

 
main

getSubList
convertAll

List
ToComplex

sum
Complex
List 

show
Complex

drop firstPart take secondPart
convert
OneTo
Complex

head plus tail
show
RePart

show
ImPart

complex length first second
    

Figure 5.9  Structure chart of design of example program 

The design callgraph metrics can be compared with the metrics of the call-
graphs of the final program. Differences can be explained by details in the fi-
nal coding, such as the use of auxiliary functions or local functions. However, 
there might have been other reasons to deviate from the design. In the exam-
ple program in Table 5.1, the conversion of a list of numbers to a complex 
number is combined with the calculation of the sum of the list with complex 
numbers, resulting in a slightly more efficient program than the one obtained 
from the design above. 

5.7 Conclusion 

The metric analyser for Miranda programs is based on a flowgraph model and 
a callgraph model. The flowgraph model uses the top level control structure in 
the function definitions: the patterns, the guards and the expressions are not 
expanded. It is questionable whether a further expansion would be useful for 
the modelling aiming at the attribute of comprehensibility of programs. The 
present model allows the analysis of test cases, and the detection of error 
prone definitions written in a bad programming style. This hypothesis has to 
be tested in further experiments (van den Berg & van den Broek, 1995b). 

The callgraph model in the analyser results in four classes of callgraphs. 
The include callgraph provides an insight in dependencies of the files used in 
the program. The global callgraph gives an abstraction of the dependencies of 
the top level functions in a script without being obscured by the local func-
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tions. The local callgraphs are useful for a more detailed analysis of the indi-
vidual top level functions. The general callgraph is used for the standard sta-
tistical analysis of the program. 

Furthermore, the Miranda metric analyser allows the construction of struc-
ture charts on the base of a design in pseudocode. The metric values of these 
design callgraphs can be compared with the values obtained from the call-
graphs of the final code. Differences may point to design decisions made in a 
later phase of the software development. 

An important advantage of the modelling of functional programs presented 
here is the close similarity with the modelling used for imperative programs. 
The same standard metrics are applicable in both cases. In this respect, Harri-
son (1993b) showed a model that deviates from the modelling in section 5.4. 
For example, a function definition f x = map h x, is modelled by Harrison with 
two calls (f, map) and (map, h) instead of the calls (f, map) and (f, h). However, 
the structure chart given in a previous article (Harrison, 1993a) is similar to 
the global callgraph introduced here. 

Somewhat larger programs have been analysed with the Miranda analyser. 
Among others, a database system with about 800 lines of source code (not in-
cluding comments), divided over 4 data files. (The program is roughly equiva-
lent to about 8000 lines of imperative code (Turner, 1982)). There are about 
450 functions defined in this system. Validation of the metrics, based on the 
flowgraph and callgraph model, has to be carried out for functional programs 
(cf. van den Berg et al., 1993; van den Berg & van den Broek, 1994, 1995b). 
Furthermore, the analyser could be easily extended with a dependency graph 
of types that are defined in a script. 

The metric analyser, with the Miranda front end to the Prometrix system, 
appears to be a very useful tool for the automated static analysis of also larger 
functional programs: by displaying the dependencies in callgraphs, for provid-
ing data on metric values of standard metrics on callgraphs and flowgraphs, 
and for detecting functions that are complex with respect to pre-set threshold 
values, e.g. size and testability. 
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Part C : Validation 
 
 

Issues 

Ince (1989) asserts that very little empirical validation of software metrics has 
occurred. What validation has been reported has been deficient in a number of 
respects. A major criticism is that the experimental design of metrics projects 
has been flawed. This is usually manifested in a sample size which is too 
small. Another criticism is that the sample of programmers or designers used 
has been artificial. Usually the subjects have been university students and not 
staff  involved in serious software development. A further criticism is that 
much of the research carried out on metrics has ignored the large variation in 
ability that occurs in the subjects who have been studied. Finally, there is the 
criticism that reporting procedures can distort the validity of any experiment. 
He concludes as follows: A major activity over the next few years will be the 
empirical validation of metrics on real projects, with real staff, and in experi-
ments which have been properly designed. 

 
Schach (1990) distinguishes experimentation-in-the-small and experimenta-
tion-in-the-many, to denote experimentation in the areas of programming-in-
the-small and programming-in-the-many, respectively. Experimentation-in-
the-small is an acceptable scientific technique for determining the validity of a 
variety of software engineering techniques for programming-in-the-small. He 
states that: there is apparently no way of conducting acceptable [controlled] 
experimental trials to compare two [design] methods for programming-in-the-
many. 

 
In a discussion of toy versus real situations for experimental research, Fenton 
et al. (1994) conclude that evaluative research in the small is better than no 
evaluative research at all. A small project may be appropriate for an initial 
foray into testing an idea or even a research design.  

 
Reviewing these issues, it has been stated by Shepperd and Ince (1994) that: 
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The importance of validation cannot be overstressed: metrics based on flawed 
models are worse than valueless: they are potentially misleading. (Shepperd 
& Ince, 1994) 

Experimental studies 

Metrics have been used in the evaluation of the benefits of software engineer-
ing methods and tools. A critical review of experimental studies is given by 
Kitchenham et al. (1994). Three types of studies have been distinguished: 
• formal experiments, i.e. a means of testing, using the principles and proce-

dures of experimental design, whether a hypothesis about the expected 
benefit of a tool/method can be confirmed; 

• case study, i.e. a trial use of a method/tool on a full scale project; 
• survey, i.e. the collection and analysis of data from a wide variety of pro-

jects. 
Each method has its advantages and its limitations. Formal experiments give 
a high degree of precision, but may not scale-up to ‘real life’; case studies are of 
a realistic scale but may not generalise to other projects or other staff or other 
organisations; surveys are realistic and can be generalised, but it may be diffi-
cult to collect sufficient comparable data and to perform valid analysis. 

In this review, some criteria are put forward for assessing the quality of the 
studies. The criteria for formal experiments are the following: 
1. a well defined experimental hypothesis 
2. full definitions of all treatments 
3. response variables directly derivable from the experimental hypothesis 
4. an experimental design that identifies and controls confounding effects 
5. a full description of the experimental conditions 
6. use of a defined statistical design 
7. use of valid techniques of statistical analysis. 
 
In Chapter 6, a study is described to explore the validation of structure met-
rics. In terms defined above, this study could be characterised as an explora-
tory formal experiment-in-the-small: it considers Miranda-type expressions to 
track the modelling, the definition of structure metrics, and the formal and ex-
perimental validation with respect to the comprehensibility of these expres-
sions. 
 
In Chapter 7, this study is extended in order to explore the application of the 
representational measurement theory to the validation of metrics. 
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There seems to be a minimum assumption that the empirical relation system 
for complexity of programs leads to (at least) an ordinal scale. (Fenton, 1994) 

The assumption of the ordinal scale has been investigated both in the formal 
relational system and in the empirical relational system for Miranda type ex-
pressions. One important  issue in this study is the use of axioms from meas-
urement theory.  
 
Chapter 8 reflects on the validation of software metrics as presented in the 
studies of the two previous chapters. As such, it raises more questions than it 
provides answers. The different types of validities are placed in the develop-
ment process of a software metric. Again, the dilemma is discussed of the lim-
ited external validity of controlled experiments combined with their high in-
ternal validity, versus the high external validity of field studies combined with 
their low internal validity.  
 
In Chapter 9, the findings of a more extended formal experiment are reported. 
The control-flow model for Miranda function definitions, described in Chapter 
5, is used in the set-up of a controlled experiment on the comprehensibility of 
structured and nonstructured definitions. As in the previous experiments, stu-
dents have been used in this experiment-in-the-small. The characteristics of 
formal experiments given above can be traced quite easily in this study. The 
experiment has been designed following a much cited study of Scanlan (1989). 
The chapter contains some criticism of this study. Furthermore, some counter-
intuitive results are reported. 
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Chapter 6 
 
 
 

6. Validation of Structure Metrics: A Case Study 20 

A framework for the validation of axiomatic structure metrics is presented. In a 
case study, the comprehensibility of type expressions in the functional pro-
gramming language Miranda has been investigated. A structure metric for the 
comprehensibility of type expressions has been developed together with internal 
and external axioms. This structure metric has been validated experimentally. 
The calibrated metric function results in a good prediction of the comprehensi-
bility. 

6.1 Introduction 

Software metrics are used to quantify objectively attributes of software entities 
(Fenton, 1991). Three types of entities can be distinguished: products, proc-
esses and resources. Furthermore, there are two types of attributes: internal 
attributes and external attributes. The latter not only depends on the software 
entity, but also on other entities. Examples of internal attributes of software 
products are size and structure; maintainability and reusability are examples 
of external attributes. Structure metrics aim to quantify the internal structure 
of the product. A general theory of structure metrics is provided by Fenton & 
Kaposi (1989). Structure metrics are based on the compositionality principle.  
 
If  
 S,S1,...,Sn: System 
 C: System × ... × System → System  
 m: System → R  
then there exists a function fC 
 fC: R × ... × R → System 
such that 
 S = C(S1,...,Sn) ⇒ m(S) = fC((m(S1),...,m(Sn)) 

                                                 
20 K.G. van den Berg, P.M. van den Broek & G.M. van Petersen (1993). Validation of Structure 
Metrics: A Case Study. Proceedings of International Software Metrics Symposium METRICS 93, 
Washington: IEEE Computer Society Press, 92-99. 
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where  
 R is a real number  
 C is a system constructor 
 m is a measure of attribute A 
 

This principle asserts that the property of a system can be derived from the 
properties of its constituent components without knowledge of the interior 
structure of those components. Interaction between properties of components 
is excluded. 

A scheme for the measurement of a software system is given in Figure 6.1 
(cf. Melton, 1992). Structure metrics have been developed for computer pro-
grams in imperative programming languages.  
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Figure 6.1  Scheme for measurement of software 

The control flow in a program S is modelled in a flowgraph F by a function f. 
By defining two constructors on flowgraphs, sequencing and nesting, a decom-
position algorithm q yields a unique decomposition tree D.  Consequently, a 
metric function md can be defined on this tree structure resulting in a number 
R. Moreover, there is a non-structural measurement ma of the system with re-
spect to attribute A. The order in the result of this ma on systems should corre-
spond to the order on systems from the composition of functions md·q·f. A tool 
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supporting this analysis is Qualms (Bache & Leelasena, 1990). There are sev-
eral front-ends for the modelling of programs in flowgraphs, i.e. the function f.  

An alternative to this approach is using a grammar to define systems. A 
parse tree P is the result of the parser p of system S. Again, a metric function 
mp can be defined on this tree structure. The order in the result of this ma on 
systems should correspond to the order on systems from the composition of 
functions mp·p. The existence of a function t, which transforms a parse tree to 
a decomposition tree has to be investigated.  

Grammars are used in complexity rankings of programs (Weyuker, 1988; 
Tian & Zelkowitz, 1992). The use of grammars is similar to the approach with 
algebraic structures as the base for compositional analysis (Zwiers, 1989). Al-
gebraic specification has been used in the validation of software metrics 
(Shepperd & Ince, 1991). Attribute grammars have been used in software met-
rics (van den Berg, 1992)21. Structure metrics have been defined with attribute 
grammars (Whitty, 1992). 

In the case study, the investigated software products are type expressions 
in the functional programming language Miranda. Type expressions and a 
structure metric are described in paragraph 6.3. The external attribute of 
these products is the comprehensibility to a human reader. The measurement 
of the comprehensibility will be described in paragraph 6.4. The general 
framework for the experimental validation is described in the following sec-
tion. 

6.2 A framework for validation 

A scheme of the framework for the experimental validation of structure met-
rics is displayed in Figure 6.2. Some model, a flowgraph or a grammar, will be 
used to model the structure of the software product and results in a tree struc-
ture. The internal axioms provide the definition of a structure metric: this re-
flects the compositionality. The external axioms state the properties of the 
software entities and give the hypothetical order of these entities with respect 
to the external attribute. 

The validation of the metric function consists of the following six steps:  
a. The function satisfies the internal axioms: consequently, the function is a 
structure metric.  
b. The function satisfies the external axioms: it provides a consistent measure 
with respect to the external attribute. This results in conditions on coefficients 
in the metric function. 

                                                 
21  Chapter 3 of this thesis 
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c. The external axioms hold in practice: the actual order on software products, 
with respect to the external attribute, corresponds to the hypothetical order 
expressed in the external axioms. 
d. The function is calibrated: the coefficients are given actual values, deter-
mined from a non-structural measurement of the software products with re-
spect to the external attribute. 
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Figure 6.2  Framework for the validation of structure metrics for an external 
attribute of a software entity 

e. The calibrated function is used for the rank order: the rank order correlation 
between measured and calculated values is determined. 
f. The calibrated function is used for prediction (in stochastic sense): the effi-
ciency of the prediction of actual values from calculated values is determined. 

In the following section, the software entity in the case study - type expres-
sions in the functional programming language Miranda - will be introduced. In 
addition, a structure metric for type expressions will be described. 

6.3 Structure metrics of type expressions 

In this paragraph, a subset of type expressions in Miranda, will be described. 
A grammar for this subset will be presented, followed by some alternative 
grammars. The internal axioms for a structure metric for type expressions will 
be given, and subsequently, the external axioms and the metric function itself. 
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6.3.1 Type expressions 

Many programming languages provide some kind of typing system. In Modula-
2, the type of variables has to be declared. The heading of a procedure declara-
tion must contain the types of the parameters and the result. E.g., the function 
procedure  
 
 PROCEDURE Digit (K: CHAR): BOOLEAN  
 

In the functional programming language Miranda it is optional to the pro-
grammer to provide the type of a function. The type-checker derives the type 
and compares this with the given type. The syntax of type expressions will be 
illustrated with some examples in Table 6.1.  

 
 
   digit :: char -> bool 
   The function digit returns True if the argument is  
   a digit and otherwise False 
 
   ? digit '5' 
   True 
 
   head :: [*] -> * 
   The function head returns the first element of  
   a given list 
 
   ? head [2,4,7,4] 
   2 
 
   first :: (*,**) -> * 
   The function first returns the first component of  
   a given 2-tuple 
 
   ?first ('5',True) 
   '5' 
 
   split :: (*-> bool) -> [*] -> ([*],[*]) 
   The function split returns, given a predicate (boolean   
   function) and a list, a tuple with the first component  
   the list with elements satisfying the predicate and  
   the second component the list with elements not  
   satisfying the predicate 
 
   ? split even [2,4,7,4] 
   ([2,4,4],[7]) 
 

Table 6.1  Examples of type expressions with function applications in Miranda 
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There are simple standard types, such as char, bool and num. The function 
constructor is denoted with an arrow →. The function digit has the type: 
 
 digit :: char → bool 
 

Furthermore, there are type variables (Watt, 1990), in Miranda denoted with 
one or more stars. Structured standard types are lists, denoted with square 
brackets, and tuples, denoted with round brackets. In each example, the type 
of the function is given and an informal description. After the question mark 
prompt, a function application is given with its result on the next line. 

6.3.2 A grammar for type expressions 

Structure metrics for Miranda type expressions are derived from a grammar. 
The grammar for a subset of type expressions is given below: here, a Miranda 
data structure is used to model this grammar. 
 
 typeexp ::= Num | Bool | Char | Var num | 
          L typeexp | T [typeexp] | F typeexp typeexp 
 

The first line of the grammar gives the rules for the prime structures and the 
second line gives the rules for the three constructors in type expressions: the 
list constructor, the tuple constructor and the function constructor.  

 
F

FF

Var 1 Bool L T

Var 1 L L

Var 1 Var 1  

Figure 6.3  Derivation tree of the type expression of the function split 

The type of the function split from Table 6.1 
 
 (* → bool) → [*] → ([*],[*])  
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can be parsed with this grammar, resulting in: 
 
 (F  (F (Var 1) Bool)  
  (F (L (Var 1))  
   T [L (Var 1)), (L (Var 1)])) 
 

The parse tree or derivation tree of the function split is given in Figure 6.3. 

6.3.3 Alternative grammars 

The grammar described above is based on the right associativity of the func-
tion arrow. The type of the function split can be structured as a function 
with one argument (the predicate (∗ → bool)) and with as result a function 
with the type ([∗] → ([∗],[∗])). This approach is named currying (cf. 
Watt, 1990). In other words, the type of split has been structured as follows: 
 
 (∗ → bool) → ([∗] -> ([∗],[∗])) 
 

There are two alternatives to this grammar. First, the type of the function can 
be structured as a function with one argument of the product type ((∗ → 

bool) × [∗]) and with a result of type ([∗],[∗]). The grammar for the 
function constructor in this case contains 
 
 F [typeexp] typeexp 
 

The second alternative is obtained when the type of the function is structured 
in a similar way as the tuple: each function arrow separates types in the func-
tion constructor, in the same way as the comma separates the types of the 
components in a tuple.  

The rule for the function constructor in this case is 
 
 F [typeexp] 
 

Clearly, the derivation tree, and derived properties such as depth, depends on 
the chosen grammar. The ultimate choice of the grammar is determined by the 
psychological plausibility of the parsing model with respect to comprehension, 
and not by the actual parsing of the compiler. This approach has been used in 
the parsing of natural language sentences (Derivational Theory of Complexity 
(Fodor, Bever & Garret, 1974). New theories on the comprehension processes 
for natural languages point to shortcomings of this approach (McNamara, 
Miller & Bransford, 1991). One might expect interaction between properties of 
constituent components. However, this theory could be adequate for the hu-
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man parsing of simple expressions in formal languages (cf. Green & Borning, 
1990). 

In the further validation study, the first grammar - based on the right asso-
ciativity of the function arrow - has been used. 

6.3.4 The internal axioms 

A function m is a structure metric if it is defined according to the composition-
ality principle. For type expressions, a structure metric should satisfy the con-
ditions listed in Table 6.2. These conditions are called the internal axioms. The 
first four axioms refer to the prime structures and the constants ci denote 
any number. The final three axioms refer to the constructors of type expres-
sions. 

 
 
 m(Num)      = cN 
 m(Char)     = cC 
 m(Bool)     = cB 
 m(Var n)    = cV(n) 
 
 m(L t)     = fL(m(t)) 
 m(F t1 t2)     = fF(m(t1),m(t2)) 
 m(T[t1,...,tn])   = fT(m(t1),...,m(tn)) 
 

Table 6.2  Internal axioms for the structure metric of type expressions 

6.3.5 The external axioms 

The order on software entities with respect to a certain attribute should be re-
flected in the values obtained by the metric functions. This order is described 
in an extension of the set of axioms, as has been done for flowgraphs (Fenton, 
1991). These additional axioms are the hypotheses that will have to be tested. 
They will be referred to as the external axioms. The software entities in this 
case study are the Miranda type expressions, whereas the external attribute is 
the comprehensibility of these expressions.  
 
Let t and tk,... be type expressions. There are many possible hypotheses 
about the intuitive order, as will be seen below: 

 
1.   An order between the prime structures, e.g.: 
 
 m(Var n) > m(Bool) > m(Char) > m(Num) 
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2. An order between type expression with a constructor and with its com-
ponents, e.g.: 
2.1. An order on (L t) and t 
 
 m(L t)     > m(t) 
 

2.2. An order on  (F t1 t2)   and t1 and t2  
 
 m(F t1 t2)  > m(t1) 
 m(F t1 t2)  > m(t2) 
 m(F t1 t2)  > max(m(t1),m(t2)) 
 m(F t1 t2)  > m(t1) + m(t2) 
 

2.3.  An order on  T[t1,...,tn] and t1 ... t2  
There are similar hypothetical orders as on F, but generalised for the number 
of components. Some of these possibilities have been illustrated in Figure 6.4. 
 

T[t1,t2,t3]

T[t1,t2] T[t1,t3] T[t2,t3]  

t1 t2 t3  

Figure 6.4  Order of type expressions with the tuple constructor 

3.  An order between type expressions with the same constructor, e.g.: 
 
 m(F t1 t2)           = m(F t2 t1) 
 m(T[t1,...,tn+1])   > m(T[t1,...,tn]) 
 m(T[t1,...,tn])      = m(T[ti,...,tj]),  
   where [ti,...,tj]  ∈ perms[t1,...,tn] 
 

4.  An order between types with different constructors 
 
 m(F t1 t2)         > m(L ti), i=1,2 
 m(T[t1,t2])        > m(L ti), i=1,2 
 m(F t1 t2)         > m(T[t1,t2]) 
 

The external axioms on the comprehensibility as used in the case study are 
listed in Table 6.3. These hypotheses have been validated experimentally. This 
will be described in paragraph 6.4. 
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 1.  m(L t)             > m(t) 
 2.  m(T[t1,...,tn])    > max(m(t1),...,m (tn)) 
 3.  m(T[t1,...,tn])    = m(T(perm[t1,...,tn])) 
 4.  m(F t1 t2)         = m(F t2 t1) 
 5.  m(T[t1,...,tn+1])  > m(T[t1,...,tn] ) 
 6.  m(T[t1,...,tn])    > m(L ti), i=1,...,n 
 7.  m(F t1 t2)         > m(T[t2,t1]) 
 

Table 6.3  External axioms for the structure metric with respect to the  
comprehensibility of type expressions 

6.3.6 The metric function 

There are many candidates for the metric function on the tree structure, that 
has been obtained so far; e.g., there are the sum and product VINAP-measures 
(Fenton, 1991). In the Qualms system, many more metrics are available. From 
a compositional theory for the attribute, the actual choice can be made. How-
ever, the final choice will be determined by the performance of the metric func-
tion in a prediction system. For the type expressions in the case study, a sim-
ple sum metric has been chosen, as listed in Table 6.4. 

 
 
  m(Num)            = cN 
  m(Char)           = cC 
  m(Bool)           = cB 
  m(Var n)          = cV(n) 
  
  m(L t)            = cL + m(t) 
  m(F t1 t2)        = cF + m(t1) + m(t2) 
  m(T[t1,...,tn])   = cT + m(t1) +...+ m(tn) 
 

Table 6.4  Metric function m for the structure of type expressions 

This function m is consistent with the given internal axioms (Table 6.2). The con-
stants cL, cF, cT, cN, cC, cB and cV(n) should fulfil certain conditions, 
which can be derived from the external axioms (Table 6.3) and the function 
definition (Table 6.4), in order that the function is in agreement with the ex-
ternal axioms. 

In the following paragraph, the experimental validation of this structure 
metric for the comprehensibility of type expressions will be described. The ac-
tual values for the constants in the metric function m will be established. 
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6.4 Validation 

The validation of structure metrics consists of six steps, as outlined in para-
graph 6.2. The experimental validation of a structure metric for the compre-
hensibility of type expressions will be described now. The first two steps of the 
validation - the proof that the metric function satisfies the internal and exter-
nal axioms - have been accomplished in the previous paragraph. The next four 
steps of the validation have to be carried out experimentally: 
c. The external axioms hold in practice 
d. The function is calibrated 
e. The calibrated function is used for the rank order correlation 
f. The calibrated function is used for prediction 

Steps c and d are established in experiment 1 and steps e and f are verified 
in experiment 2. A detailed account of these experiments is given in van Peter-
sen (1992).  

For the (non-structural) measurement of comprehensibility of programs, 
there are several techniques known from literature (Robson, Bennett, Corne-
lius & Munro, 1991): 
1. answering (multiple choice) questions 
2. filling in blanks  
3. writing a program for a given input and output 
4. writing fitting input and output for a given program 
5. modifying an existing program 
6. localising errors in a program 

 
In this case study, a variant of the third technique has been chosen. A type ex-
pression will be shown to the subject. He or she is requested to write a func-
tion, that will result in exactly this type when offered to the Miranda type 
checker. The time is measured between the moment that the type expression is 
shown to the subject until the answer is completed by the subject. For exam-
ple, if the following type expression is shown 
 
 f  :: (num → char) → char → bool 
 

then the following definition will be a correct answer: 
 
 f g 'a' = True, if g 5 = 'b' 
 

It is not required that the function itself has any sensible meaning; just the 
given type must agree exactly with the type of the function obtained by the 
type checker. 
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6.4.1 Method 

The subjects in the experiments are 16 first year students in Computer Science 
at the University of Twente. During one term, they followed a course in Func-
tional Programming with Miranda (Joosten & van den Berg, 1990). They vol-
unteered to the experiments and were randomly distributed over the two. 

The material consisted of 40 questions with type expressions offered to the 
subjects. In each question the subject has to answer with a definition that 
matches with the given type expression. 

6.4.2 Procedure 

The questions are offered to the subjects on a system in the computer science 
laboratory (SUN workstations). The subjects know this system from their 
practical assignments in the programming course. First, there is a short intro-
duction on how to answer the questions, and subsequently, two questions are 
presented for trial. With the standard editor (Vi) the subjects type their con-
ceived answer. The time, elapsed between showing the question and leaving 
the editor, is measured automatically by the system. A countered balanced de-
sign is chosen in this experiment. All subjects get the same questions, but they 
are offered in a random order different to each subject. 

6.4.3 Results 

The hypothetical order on type expressions has been expressed in the external 
axioms. Each axiom has a left hand side (LHS) and a right hand side (RHS). 
The questions are assigned to the LHS and RHS of the axioms. In this way, 
questions can be used more than once. This approach is someway similar to 
the idea of atomic modifications (Zuse, 1991). 

For example, axiom 1 states that m(L t) > m(t) . A question pair is for 
the LHS [char → bool] and for the RHS char → bool.  

A within subject design is chosen. Per axiom and per student the average 
time is calculated for LHS-questions and RHS-questions. Only questions that 
belong to an axiom of which both sides are answered correctly are taken into 
account. Type writing errors in the answers have been corrected. The meas-
ured time is adjusted for an individual offset-time: the time for a subject to go 
with the cursor to the answer frame and leaving the editor, without giving an 
answer. Extreme values are discarded (in which the difference between the 
averaged LHS and RHS times for an axiom differs more than three times the 
standard deviation from the arithmetic mean). The differences between the 
LHS and RHS appear to have a normal distribution. The average time is calcu-
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lated for each side and each axiom from the averages of all students. The re-
sults are given in Table 6.5.  

The significance of the difference between the LHS and the RHS is calcu-
lated with the Fischer t test (which applies to differences between correlated 
pairs of means (Guilford & Fruchter, 1978). The degree of freedom is deter-
mined by the number of correct answer pairs (and not merely by the number of 
subjects). The results are shown in Table 6.5. 
 

 axiom t_LHS (sec) t_RHS (sec) Fischer-t(n) 
1 LHS > RHS 19.0 08.0  t(26)   = +7.09* 
2 LHS > RHS 21.6 10.6  t(27)   = +5.08* 
3 LHS = RHS 33.8 29.7  t(15)   = +0.70 
4 LHS = RHS 15.2 20.7  t(22)   = -3.12* 
5 LHS > RHS 25.6 20.5  t(20)   = +1.08 
6 LHS > RHS 24.6 12.7  t(25)   = +4.08* 
7 LHS > RHS 19.7 12.7  t(17)   = +2.03 

 n = # degrees of freedom,  * = p < .05  

Table 6.5  Results of the validation of the external axioms with respect to the 
comprehensibility of type expressions  

The measured values of the times for the good answers in the first experiment 
are also used for the calculation of the values of the coefficients in the metric 
function. The questions are grouped now per constructor. For example, the cal-
culation of the coefficient cT from the equation: 
 
 m(T[Num, Bool, F Char Bool])  
  = cT + m(Num) + m(Bool) + m(F Char Bool)) 
 

The time measured for the type expression left is 48 seconds and for the type 
expressions right is measured 5.0, 7.0 and 27.5 seconds respectively. From 
these values, cT has been calculated and averaged over the other values ob-
tained for cT. In Table 6.6 the average values for the coefficients are given.  
 

cL cT cF cC cN cB cV 
10  6  7  4  5  7 19 

Table 6.6  Values for the primes and the constants in the metric function (secs) 

In the second experiment, a new set of questions is offered to the second group 
of subjects. The average time is calculated from each good answer and, based 
on these values, the rank order of type expressions has been established. 
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Moreover, with the calibrated metric function from the first experiment, the 
rank order of the same type expressions has been calculated. The correlation 
between both orders has been determined according to Spearman (Guilford & 
Fruchter, 1978). The rank order correlation coefficient is 0.59. (Pearson's coef-
ficient can not be used because the scores have been obtained in dependent 
pairs). 

On the basis of the calculated value of the comprehensibility with the cali-
brated metric function, a prediction can be made of the actual comprehensibil-
ity (as would have been obtained by measurement). The forecasting efficiency 
(Guilford & Fruchter, 1978) is 19%; i.e. a reduction in variance of the predicted 
comprehensibility is achieved by using the calculated metric value. 

6.5 Discussion 

From the values in Table 6.5, it appears that for axioms 1, 2 and 6 there is a 
significant difference between the LHS and RHS, according the hypothesised 
order. For axiom 5 and 7, no significant difference has been found. In case of 
axiom 5, a possible cause of this fact could be that the expansion of a tuple 
with a component only gives a small, and therefore a difficult to measure, ef-
fect. For axiom 7, the reason of the small difference is not clear. Axioms 3 and 
4 have to be treated separately. It seemed to be reasonable to include equali-
ties in external axioms. However, equalities can not be validated experimen-
tally in the way described before. Therefore, nothing can be concluded from the 
results for these two axioms.  

It has been expected that the comprehensibility of a function is more diffi-
cult than of a tuple with the same components. Table 6.6 shows that the actual 
difference is small (but significant). The value for the constant cV for type 
variables is remarkably high. 

The rank order correlation coefficient, for the calculated and measured val-
ues, is reasonably high. However, this coefficient is as high if the metric func-
tion returns the numbers of nodes and leaves in the decomposition tree. This 
case can be seen as the Halstead measure for the length of a 'program' (Hal-
stead, 1977). The nodes are the total number of operators and the leaves the 
total number of operands. The so defined measure is a structure metric. It has 
not been checked whether this length metric satisfies all internal axioms. A 
high correlation coefficient is found as well if the calculated rank order is 
based simply on the size of the type expressions, i.e. the number of characters. 

The forecasting efficiency is reasonably high. An even higher value (53%) is 
obtained when the values are grouped (16 groups). This leads to a considerable 
reduction in the variance of the prediction of the comprehensibility from the 
calculated metric value. 
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6.6 Conclusion 

In this chapter a framework has been presented for the experimental valida-
tion of structure metrics. In a case study, a structure metric and its validation 
for the comprehensibility of type expressions in Miranda has been studied 
within this framework. No hard conclusions can be drawn about the absolute 
values obtained in the experiments. There is need for additional experiments. 
The validation for the alternative grammars of type expressions has to be car-
ried out. Metric functions, which incorporate the depth of nesting, have to be 
investigated. The influence of type expressions for standard functions has to be 
included (e.g. the type expression (* → *) will be recognised as belonging to 
the standard identity function id). The set of primes has to be extended (e.g. a 
list of char will be comprehended as a string). The experiments have to be ex-
tended to include the whole Miranda type language (e.g. type synonyms, re-
cursive types and abstract data types should be included). The effect of multi-
ple occurrences of types in type expressions, which cannot be accounted for 
with compositionality, has to be investigated. 

There are some general conclusions from this case study. The use of gram-
mars, as an alternative to flowgraphs in the modelling of software in a tree 
structure, has been shown. The role of the external axioms, to express the hy-
pothetical order on the software entities with respect to the external attribute, 
has been emphasised. In a prediction system based on structure metrics, there 
has to be a theory of compositionality for the external attribute. The experi-
mental validation of the hypothetical order and the calibration of the metric 
function both require a large amount of experimental data on the software en-
tities. Statistical analysis is needed to establish the actual order on these soft-
ware entities and for the calculation of quantities, such as the rank order cor-
relation coefficient and the forecasting efficiency. 
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Zwei geordnete Mengen M und N nennen wir 'ähnlich', wenn sie sich gegen-
seitig eindeutig einander so zuordnen lassen, dass wenn m1 und m2 irgend 
zwei Elemente von M, n1 und n2 die entsprechenden Elemente von N sind, 
alsdann immer die Rangbeziehung von m1 zu m2 innerhalb M dieselbe ist, 
wie die von n1 und n2 innerhalb N. Eine solche Zuordnung ähnlicher Mengen 
nennen wir eine 'Abbildung' derselben auf einander.            
           
 Cantor (1895) 
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Chapter 7 
 
 

 

7. Axiomatic Testing of Structure Metrics 22  

In this chapter, axiomatic testing of software metrics will be described. The test-
ing is based on representation axioms from the measurement theory. In a case 
study, the axioms are given for the formal relational structure and the empiri-
cal relational structure. Two approaches of axiomatic testing are elaborated: 
deterministic and probabilistic testing. 

7.1 Introduction  

In this chapter, axioms from representational measurement theory will be util-
ised to establish the theoretical and empirical order of software entities with 
respect to some attribute. A simplified model for software measurement will be 
used (see Figure 7.1). Software entities will be considered: products, processes 
or resources (Bush & Fenton, 1990). Data on an external attribute (e.g. main-
tainability, reusability) of these entities are collected with some measure m'. 
 

             
entities abstractions

m' a m

softwarenumbers numbers

external attribute internal attribute

 

Figure 7.1  Model for software measurement 

The external attribute will be related with some internal attributes, such as 
size or structure. The internal attribute is measured with a metric function m 
on abstractions of the software entities. The measure m is validated to the ex-
tent to which it preserves the order on the software entities obtained inde-
pendently of m by the quantified criterion m' (Melton et al., 1990). 

                                                 
22 K.G. van den Berg & P.M. van den Broek (1994), Axiomatic Testing of Structure Metrics. Pro-
ceedings of the Second International Software Metrics Symposium, London: IEEE Computer Soci-
ety Press, 45-53. 
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In a case study, axioms from the measurement theory will be tested, both for-
mally and empirically. The case itself, comprehensibility and structure of type 
declarations, is of interest to researchers in the field of programming method-
ology. More general, the case is used to exemplify the application of represen-
tational measurement theory in software measurement and validation. 

The representational approach has been used in software measurement 
(e.g., Baker et al., 1990; Fenton, 1990; Melton, 1990; Bieman et al., 1992; Mel-
ton et al., 1992; Zuse, 1992). Some basic concepts in this measurement theory 
(Krantz et al., 1971; Finkelstein & Leaning, 1984; Suppes et al., 1989; Luce et 
al., 1990) will be defined according to Roberts (1979). 

A relational structure is a (n+1)-tuple (A, R1,...,Rn), where A is a set, and 
R1,...,Rn are relations on A. A function f: A → A' is called a homomorphism 
from relational structure (A, R1,...,Rn) into relational structure (A', R1',...,Rn') if, 
for each i ∈ 1..n, 
 
  Ri(a1,a2,...,ari) = Ri'(f(a1),f(a2), ...,f(ari)) 
 

A homomorphism is an order preserving mapping. The triple ((A,R1,...,Rn), (A', 
R1',...,Rn'),f) is said to be a scale. If ( , ,f) is a scale and ϕ is a function such 
that ( , ,ϕ.f) is a scale as well, then ϕ is said to be an admissible transforma-
tion of scale. The representation  →  is regular if all scales ( , ,f) are related 
via an admissible transformation of scale. The class of admissible transforma-
tions of scale of a regular representation defines the scale type of the represen-
tation. Some common scale types are: absolute, ratio, interval, ordinal and 
nominal scale (Roberts, 1979: 64). The focus in the case study is on ordinal 
scales, which are defined by monotone increasing transformation functions. 

The aim of software measurement is to enable the comparison of software 
entities with respect to some attribute. As given in the model of Figure 7.1, 
there are four relational structures. The outmost structures are numerical re-
lational structures. The software entities with their relations form the empiri-
cal relational structure. The fourth relational structure involves the abstrac-
tions. Axioms, that will be tested, state sufficient conditions for the existence 
of a regular scale. By investigating the axioms, the representation and meas-
urement scale of these structures can be established. 

In order to make the discussion of axiomatic testing concrete, a case study 
will be presented related to a specific kind of software documentation: type 
declarations. The programmer provides explicit information about the type of 
the objects in the program. This form of documentation not only may have an 
impact on the reliability of the software, but also on the comprehensibility to 
human readers of the programs (reviewers, maintenance programmers). The 
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software entities are type declarations in the functional programming lan-
guage Miranda (Turner, 1986). Type declarations themselves have a certain 
degree of (cognitive) complexity: they are easy or difficult to comprehend. 'The 
comprehensibility' will be taken as the external attribute. The internal attrib-
ute is 'the structure' of type expressions. The relationship between the com-
prehensibility of type expressions and their structural properties will be inves-
tigated: first, by establishing the scale of measurement of the internal attrib-
ute and the external attribute, and then by investigating the correspondence 
between both measurements. 

 
This chapter is organised as follows. In section 7.2, more details about the 
software entities in the case study, the type declarations, will be given. In the 
subsequent section, the modelling of the structure of type expressions is elabo-
rated. The actual collection of data on the external attribute, the comprehensi-
bility, will be described in section 7.4, with an exemplification of the determi-
nistic and probabilistic testing of axioms. The final section discusses some re-
sults obtained with this approach. 

7.2 The case study 

The software entities considered in the case study, type expressions, will be 
introduced. In an imperative programming language like Modula-2 or Pascal, 
the heading of a procedure declares the type. For example, the heading of the 
function procedure IsDigit is: 
 
 PROCEDURE IsDigit (C: CHAR): BOOLEAN; 
 

In the case study, type expressions in the functional programming language 
Miranda are considered. The type declaration of the function isdigit is (de-
noted with :: and on the right hand side a type expression): 
 
 isdigit :: char → bool 
 

A function type is denoted with the symbol "→". The function split has a more 
complex type: split returns a tuple with two lists of numbers, one with ele-
ments of a given list that satisfy a predicate, and the second list with elements 
that do not.  
 
 split :: (num → bool) → [num] → ([num],[num]) 
 

The type of the predicate, the first argument of the function split, is a function 
type (num → bool). This argument is enclosed by round grouping brackets. The 
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type of the second argument [num] is a list type, a list of elements of type num. 
A list type is denoted with square brackets. The type of the result of the func-
tion is a tuple type with two components, each of type [num]. A tuple type is 
denoted with round brackets and component types separated by a comma. It is 
possible to define type synonyms, e.g. numlist == [num]. The type of function 
split with this synonym is: 
 
 split :: (num → bool) → numlist → (numlist,numlist) 
 

The canonical form of the two given types of the function split, as used by the 
type checker, is the same (and equal to the first one). 

Type declarations form an important clue to the understanding of functions 
in a program. They give a partial specification of the function: the type of its 
arguments and the type of the result. The complexity of the type declaration 
might give an indication of the complexity of the task to be performed by the 
function (e.g. Cardelli & Wegner, 1985). 

In the 'real world model' (Maki & Thompson, 1973), restrictions will be im-
posed on the 'real world' entities and phenomena. In the case study the type 
expressions will be restricted to three standard types: char, num and bool, and 
three type constructors: the function type, the tuple type, and the list type (for 
homogeneous lists). Furthermore, neither type variables nor abstract data 
types are considered. Also, the influence of the naming of types and typo-
graphic issues will not be considered. Type synonyms are not considered. In 
other words, these aspects will be kept invariant in the case study. Type ex-
pressions with these restrictions will be called simple type expressions. 

Type expressions are studied in the context of programs developed in an 
academic environment. It is evident that comprehensibility depends on the ex-
perience of the reader. The case study is carried out with novice Miranda pro-
grammers with corresponding proficiency. Only structural properties of simple 
type expressions in Miranda in relation with their comprehensibility to novice 
programmers are examined. 

7.3 The theoretical order 

In this section, the modelling of type expressions is described. The abstraction 
of type expressions is defined, a relation on abstract type expressions and a 
structure metric (cf. Melton et al., 1990). Structure metrics are based on the 
compositionality of the structural properties (Fenton & Kaposi, 1989). On the 
basis of these definitions, the scale of measurement is established. 
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7.3.1 The abstraction 

A relational structure (A, R1,...,Rn) is defined. Set A consists of abstract type 
expressions; R1,...,Rn are relations on abstract type expressions. In some cases, 
the corresponding operation of a relation will be used in the relational struc-
ture (cf. Roberts, 1979: 41). These operations are called concatenation opera-
tors or constructors. 

First, the mapping of simple type expressions to abstract type expressions 
is defined. This abstraction implies the following rules: 
1. the order between components in a tuple type expression is disregarded 
2. grouping brackets around a tuple type expression with one component are 

disregarded  
3. grouping brackets implied by the right associativity of the function type 

constructor are disregarded. 
For abstract type expressions the following data structure will be used as 
model: 
 
 texp ::= L texp | F [texp] | T {texp} | C | N | B 
 

with respectively: L the list type constructor; F the function type constructor; T 
the tuple type constructor; C the standard type char; N for num and B for bool. 
Next to the constructors, [texp] denotes an ordered list of abstract type expres-
sions, and {texp} denotes a multiset. Some examples of the abstraction are 
given in Table 7.1. 
 
 type expression abstraction 
ta ((num → [bool]), bool) T { F [N, L B], B} 
tb (bool, num → [bool]) T { B, F [N, L B]} 
tc num → ([bool] → bool)  F [ N, L B, B] 
td num → [bool] → bool F [ N, L B, B] 
te (num → [bool]) → bool F [ F [N, L B], B] 
tf (num→bool)→[num]→([num],[num]) F [ F [N,B], L N , T {L  N, L  N}] 

Table 7.1  Example type expressions with abstractions 

The abstractions of ta and tb are the same: the round brackets in (num → 
[bool]) are disregarded (rule 2), as the order of components in the tuple (rule 
1). The abstractions of tc and td are the same. The abstraction of tc is not F [ N, 
F [ L B, B]], since the round brackets in ([bool] → bool) are disregarded (rule 
3). In other words, the type of the result of a function is not allowed to be a 
function type. The abstractions of td and te are different, since the grouping 
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brackets in te can not be disregarded (→ is right associative). With tf the ab-
straction of the type of the example function split is given. 

There are alternative abstractions; for example, to restrict the function type 
to F [t1, t2] (only two types in a function type); or to disregard the order of the 
arguments of functions. These alternatives are discussed in van den Berg et al. 
(1993). The choice between abstractions of entities is determined by the actual 
use of the abstractions: the establishment of a good correspondence between 
an internal attribute based on these abstractions, and an external attribute of 
the entities. 

7.3.2 The containment relation 

The containment relation on abstract type expressions, denoted by p , will be 
defined. Let a and b be abstract type expressions, with concatenation operators 
⊕ and ⊗ respectively, and with maximal subexpressions a1,...,an and b1,...bm 
respectively, as depicted in Figure 7.2. 
  

+

a a a
1 2 n

...

a = x

b b b
1 2 m

...

b = 

 

Figure 7.2  Two abstract type expressions 

Then a p  b iff a is contained in b in the following sense: a is contained in b if a 
is contained in bi for some i. Moreover, if ⊕ = ⊗ then a is contained in b if each 
ai is contained in some bi', subject to the conditions that 1',...,n' are pairwise 
different, and if ⊕ = F then [1',...,n'] is ordered. The containment relation is a 
partial order. 

Consider, for example, the set of abstract type expressions in Figure 7.3: 
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Figure 7.3  Example abstract type expressions 
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The containment relation of these type expressions, ({t1,t2,t3,t4}, {(t1,t3), (t1,t4), 
(t2,t4)}), is given in partial order diagram (Hasse diagram) in Figure 7.4. 
 

  t t

t t3 4

1 2  

Figure 7.4  Partial order with p  on example type expressions of Figure 7.3 

With the definition of this containment relation, the formal relational struc-
ture (texp, p , L, F, T, C, N, B) for abstract type expressions has been de-
scribed. 

7.3.3 Extension of the containment relation and ordinal scale 

For the relational structure from the previous section, a measurement scale 
will be considered, based on theorems from measurement theory (Roberts, 
1979). Only ordinal measurement will be discussed here. The following theo-
rem will be used: 

Suppose A is a countable set and R is a binary relation on A. If f is a real-
valued function on A which satisfies 
 
 a R b    ⇔  f(a) ≤ f(b)       (. 1) 
 

then ((A, R), (Re, ≤), f) is an ordinal scale (Roberts, 1979: 110). 
For abstract type expressions, a linear structure metric function m is de-

fined, with all constants ci ≥ 0 : 
 
 m(C)   =  cC         (. 2) 
 m(N)    =  cN         (. 3) 
 m(B)    =  cB         (. 4) 
 m(T{t1,...,tn}) =  cT + m(t1) + ... + m(tn)    (. 5) 
 m(L t)   =  cL + m(t)       (. 6) 
 m(F[t1,...,tn]) =  cF + m(t1) + ... + m(tn)    (. 7) 
 

The theorem above is not applicable for this function m and the contain-
ment relation p  on type expressions, because equation 1 is not satisfied (p  is a 
partial order). Therefore, with this function m a new relation pm on type ex-
pressions is defined as follows: 
 
 ta pm tb   ⇔  m(ta) ≤ m(tb)      (. 8) 
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The relation pm is an extension of the containment relation p , i.e.  
 
  ta p tb   ⇒  ta  pm tb       (. 9) 
 

From the theorem above it follows that ((texp ,pm), (Re, ≤), m) is an ordinal 
scale.  
 
In this section, an abstraction of type expressions and a containment relation 
on abstract type expressions have been defined. An extension of this relation 
derived from a structure metric function provides measurement of the internal 
attribute structure of type expressions on an ordinal scale. This allows the in-
vestigation of a correspondence of the extension with the empirical order as 
given by the quantified criterion, which also maps on (Re,≤) (see subsequent 
section). This approach differs from the one proposed by Fenton (1992). For a 
partial order on flowgraphs, Fenton defines a mapping of flowgraphs to (N,|), 
where N is the set of natural numbers and | is the relation 'divides without 
remainder', instead of a mapping to (Re,≤), in order to satisfy the representa-
tion condition (equation 1). In the following section, the empirical order of type 
expressions will be discussed. 

7.4 The empirical order 

In this section, the order of type expressions will be established with respect to 
the external attribute comprehensibility. The conditions for an ordinal scale 
are investigated. 

There are several approaches to the measurement of comprehensibility of 
programs. In the case study, one measure has been chosen for the comprehen-
sibility of type expressions (van den Berg et al., 1993)23: the time in seconds 
needed for a subject to read a given type expression and to conceive and type-
write a (function) definition with exactly this type in the 'standard' program-
ming environment. The time between showing the type expression on the 
screen and the completion of the answer is measured automatically. After-
wards, with the type checker of the programming system, the answer is 
marked as correct or incorrect. This time measurement will be used as crite-
rion for the comprehensibility.  

The data have been collected in controlled experiments. The subjects in the 
experiment are novice programmers, all first year students in computer sci-
ence. Two data sets are used, each based on responses of 14 subjects to 42 type 
expressions (per data set 588 responses). Dataset1 consists of responses of 14 

                                                 
23  Chapter 6 of this thesis 
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subjects to 16 type expressions, with a total of 241 correct responses; dataset2 
is based on responses of 14 other subjects to another set of 16 type expressions, 
with a  total of 347 correct responses. The type expressions are offered to the 
subjects in random order. Of the 42 questions in the original experiment, ex-
pressions with type variables have not been considered here, neither have 
questions with less than 6 correct answers. In Table 7.2 the type expressions of 
dataset1 are given. Further details of the experiments can be found in (van Pe-
tersen, 1992; van den Berg et al., 1993). 
 

rank nr type expression # correct 
(max 14) 

average 
time (sec) 

standard 
dev (sec) 

16 20 bool → char → bool 6 50.0 27.6 
15 27 (num,bool) → (num,bool) 10 44.7 24.7 
14 12 num → char → char 7 35.0 19.6 
13 13 [(num,bool)] 12 30.0 9.8 
12 18 bool → num 14 28.9 12.8 
11 5 [char] 12 24.8 6.2 
10 34 (num,bool,char) 13 24.7 7.2 
9 15 num → bool 12 23.3 9.5 
8 28 char → char 7 23.1 6.7 
7 17 char → bool 8 21.8 8.3 
6 26 num → num 10 19.7 10.6 
5 14 (num,bool) 14 18.8 5.4 
4 3 bool 14 17.7 9.6 
3 2 num 14 14.6 5.5 
2 41 (num,num) 13 13.9 3.1 
1 1 char 13 12.8 3.2 

Table 7.2 Ranking of type expressions in dataset1 according to the average time 

The following approaches in the analysis of the data will be used. Firstly, a 
global analysis will be given based on the average time measured for each type 
expression. Secondly, an axiomatic analysis of the relative preference of each 
subject between pairs of type expressions will be described. Finally, an axio-
matic analysis based on the relative frequencies of these preferences will be 
considered. 

7.4.1 Global analysis of the empirical order 

For each type expression, the average time for all correct responses has been 
calculated. The data for the first set are given in Table 7.2. 
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In Figure 7.5, for a subset of type expressions of dataset1, the empirical or-
der based on the average time and the theoretical partial order are compared. 
The empirical order for this subset, except the value obtained on type expres-
sion 41, is an extension of the partial order of the 9 abstract type expressions. 
Taking into account a rather large standard deviation in the measured values, 
there is reasonable agreement between the theoretical order and the empirical 
order based on the average time. However, the scale type of the empirical or-
der itself is not yet known from this analysis. For this purpose, the properties 
of this order have to be analysed by examining the axioms, as has been done 
for the theoretical order in the previous section. 
 

empirical order

average 
time (sec)

44.7

28.9

23.3

17.7

14.6

3: bool

2: num

18: bool -> num

15:  num -> bool 

27: (num,bool) -> (num,bool)

theoretical partial order

13: [(num,bool)]

14: (num,bool) 18.8

30.0

26:  num -> num 

41:  (num,num) 

13.9

19.7

 

Figure 7.5  Theoretical partial order in Hasse diagram and empirical  order of 
subset of type expressions in dataset1 

 

7.4.2 Axiomatic analysis of the empirical order 

Two types of axiomatic analysis will be ensued: a deterministic analysis and a 
probabilistic analysis. Each of them aims at establishing the representation of 
the empirical order by testing the axioms from the theorems. The theory of the 
deterministic analysis can be found in Krantz et al. (1971); of the probabilistic 
analysis in Suppes et al. (1989). In this section, Roberts (1979) will be used as 
the main reference. It should be expected that the comprehensibility measure 
in the experiment is on an ordinal scale. In that case the data should be con-
form a (strict) weak order. 
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7.4.2.1 Deterministic axiomatic analysis 

On the basis of the time measurement (in seconds) for each type expression 
per subject, it is possible to define the relation R for all type expressions a, b in 
the data set A: aRb ⇔ ta > tb. This relational structure (A,R) represents the 
'preference' of each subject in the indication of the most difficult type expres-
sion. The preference structure (A,R) can be represented in the preference ma-
trix (A,p) defined as, ∀ a,b ∈ A: 
 
  pab = 1 ⇔ aRb and pab = 0 ⇔ ¬ aRb    (. 10) 
 

The ranking of correctly answered questions per subject is determined. All 
these individual rankings form a profile, i.e. a list of k rankings (k is the num-
ber of subjects). In the experiment, not all individual rankings are complete, 
since not all questions have been answered correctly. There are only 2 subjects 
for each data set with a complete ranking. A reduction of dataset1 to a subset 
of 7 questions (subset1 = {12, 13, 15, 18, 20, 27, 34}) results in 5 complete rank-
ings;  also, a reduction of dataset2 to 7 questions (subset2 = {115, 118, 123, 
124, 127, 129, 132}) results in 5 complete rankings.  

A group preference structure (A,M) from a list of complete individual prefer-
ence structures can be derived, for example according to the simple majority 
rule, defined as follows (Roberts, 1979: 118):  
 
  aMb ⇔ #aRb > (#aRb + #bRa)/2     (. 11) 
 

where #xRy is the number of relations R which contain (x,y). 
The group preference matrix of subset1 based on the simple majority rule is 

given in Table 7.3. In total 35 correct responses have been used. 
 

nr 12 13 15 18 20 27 34 
12 0 1 1 1 0 0 1 
13 0 0 1 1 0 1 1 
15 0 0 0 0 0 0 0 
18 0 0 1 0 0 0 1 
20 1 1 1 1 0 1 1 
27 1 0 1 1 0 0 1 
34 0 0 1 0 0 0 0 

Table 7.3  Group preference (A,M) for 7 type expressions of dataset1 (k=5)  

A group ranking can be obtained from the group preference structure if the 
data are consistent: there are no intransitivity's (i.e. a preference cycle: pab = 1 
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∧ pbc = 1 ∧ pca = 1) allowed. For this subset there are inconsistencies in the 
group preference structure. The three type expressions that are not transitive 
are: 12: (num  → char  → char); 13: [(num,bool)]; and 27: (num,bool) → 
(num,bool).  

The group preference structure of the second subset is consistent. It is a 
strict weak order (asymmetric and negatively transitive). An ordinal function 
m for this subset is defined as follows (Roberts, 1979: 105): 
 
  m(x) =  #{y ∈ A such that xRy}     (. 12) 
 

The function m for the subset of type expressions of dataset2 is given in Table 
7.4. 

 
nr function 
123 m ([char] → bool)   =  6 
124 m (bool → [char])   =  5 
129 m ([char])      =  4 
132 m (bool → char)    =  3 
127 m (char → bool → bool)  =  2 
115 m (bool)     =  1 
118 m (char)     =  0 

Table 7.4  Function m for type expressions in subset2 

For the first subset, this function yields the same value for each of the type ex-
pressions 12, 13 and 27, resulting in a violation of the representation condition 
(equation 1). 

7.4.2.2 Probabilistic axiomatic analysis 

A major disadvantage of the analysis in the previous section is that only com-
plete preference structures can be taken into account. With a probabilistic 
analysis this can be circumvented. It is possible to calculate the probability 
matrix (Roberts, 1979: 273) with relative frequencies based on all correctly an-
swered questions: 
 
  pab = (#aRb) / (#aRb  + # ¬(aRb)), if a ≠ b  (. 13) 
  pab = 0.5, if a = b        (. 14) 
 

From this it can be seen that: ∀ a,b ∈ A:  pab + pba = 1. Such a probability ma-
trix represents a forced choice pair comparison structure (A,p).  

This structure (A,p) is weak stochastic transitive if, ∀a,b,c ∈ A : 
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  pab ≥ 0.5 ∧ pbc ≥ 0.5 ⇒ pac ≥ 0.5     (. 15) 
 

A weak order (A,W), associated with a weak stochastic transitive structure 
(A,p), is given by W defined on A by 
 
  aWb ⇔ pab ≥ pba         (. 16) 

 
nr 12 13 15 18 20 27 34 
12 0.50 0.67 1.0 0.71 0.40 0.43 0.71 
13 0.33 0.50 0.60 0.58 0.33 0.44 0.64 
15 0.0 0.40 0.50 0.25 0.0 0.0 0.42 
18 0.29 0.42 0.75 0.50 0.33 0.30 0.54 
20 0.60 0.67 1.0 0.67 0.50 0.60 0.83 
27 0.57 0.56 1.0 0.70 0.40 0.50 0.89 
34 0.29 0.36 0.58 0.46 0.17 0.11 0.50 

Table 7.5  Probability matrix for 7 type expressions of dataset1 (k=14) 

As an example, in Table 7.5 the probability matrix is given for the same subset 
of type expressions as in the previous section. The matrix can be compared 
with the group preference matrix of Table 7.3. However, the matrix presented 
here has been calculated with data of all 14 subjects. In total 74 correct re-
sponses have been used. This probability structure is weak stochastic transi-
tive and hence consistent, contrary to the group preference of 5 subjects. 
 

rank type expressions 
7 20: bool → char → bool 
6 27: (num,bool)→(num,bool) 
5 12: num → char → char 
4 13: [(num,bool)] 
3 18: bool → num 
2 34: (num,bool,char) 
1 15: num → bool 

Table 7.6  Ranking of 7 type expressions based on associated weak order (k=14) 

On the basis of this probability structure for these type expressions, an associ-
ated weak order can be calculated with a ranking (see Table 7.6). 

 
In the previous analysis, no attention has been given to measurement errors 
and the significance of the experimental data. For the probability matrix from 
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this data set (Table 7.5), the significance of the relative frequencies has been 
calculated. The sign test has been used24 (Guilford & Fruchter, 1978). A sig-
nificance of α < .09 will be achieved if 10 out of 14 subjects show the same sign 
of the difference between the time measured for two type expressions ta and 
tb, which presumes a probability pab ≥ 0.71. For the probability of the type ex-
pressions in subset1, the structure (A,W) is calculated with 
 
  aWb ⇔ pab ≥ λ          (. 17)  
 

with threshold probability λ = 0.75. The structure obtained in this case is not a 
weak order, however it satisfies the axioms for a semiorder, which are the fol-
lowing (Roberts, 1979: 250): 
 
  ¬ aRa           (. 18) 
  aRb ∧ cRd ⇒ (aRd ∨ cRb)      (. 19) 
  aRb ∧ bRc ⇒ (aRd ∨ dRc)      (. 20) 
 

A weak order (A,W) associated with the semiorder (A,R) can be obtained with 
W defined on A by (Roberts, 1979: 256): 
 
  aWb ⇔ ∀ c ∈ A: (bRc ⇒ aRc) ∧ (cRa ⇒ cRb)  (. 21) 
 

For the semiorder obtained above, the associated weak order has been calcu-
lated.  A ranking for this weak order is given in Table 7.7, with ties at ranks 4-
5 and 6-7 (resulting respectively in rank 4.5 and 6.5). 
 

rank type expressions 
6.5 20: bool → char → bool 

27: (num, bool) → (num, bool) 
4.5 12: num → char → char 

18: bool → num 
3 13: [(num, bool)] 
2 34: (num, bool, char) 
1 15: num → bool 

Table 7.7  Ranking of a subset of 7 type expressions based on the associated 
weak order of the semiorder (λ=0.75, k=14) 

                                                 
24 The Wilcoxon signed ranks test is not applicable because the rankings are not complete for all 
subjects.  
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From the previous analysis of the empirical order of type expressions with re-
spect to the external attribute comprehensibility, it can be concluded that, for 
subsets of type expressions, the measurement of time to find an instance of a 
given type, results in an ordinal scale. 

7.5 Discussion 

It has been shown that type expressions can be measured on an ordinal scale 
with respect to the internal attribute structure by defining an extension of a 
containment relation on abstract type expressions. 

In the case study, the comprehensibility of simple type expressions has 
been operationalized as a time measurement. The ranking of the average time 
is in reasonable agreement with a weak order extension of the partial order 
obtained for the corresponding abstract type expressions. Axiomatic analysis 
has been used to localise inconsistencies in the experimental data: an example 
has been given of an intransitive group preference. An ordinal measure has 
been calculated for a consistent data set. Incomplete data sets have been ana-
lysed with a probabilistic consistency axiom: the weak stochastic transitivity. 
An ordinal measure has been established based on these probabilistic data. 
Measurement errors have been treated with a threshold probability and 
semiorders. The order obtained in this way shows a deviation of the previous 
order and appears to have more ties.  

Subsequently, the correspondence between the two measurements can be 
established now. There are two steps which have been described in a previous 
study (van den Berg et al., 1993)25. Firstly, the structure metric function m de-
fined in section 7.3.3  is calibrated, resulting in values for ci. This can be done 
with standard linear regression techniques. Secondly, this calibrated function 
is used in the prediction of the comprehensibility values. The forecasting effi-
ciency of the prediction has been established. 

Another important aspect is the use of the approach, outlined in this chap-
ter, to other software entities with other attributes. There seems to be at least 
one important field where this approach could be successful. This is the do-
main of complexity measures based on flowgraph modelling. An ordering of 
flowgraphs is given by Bache (see Fenton, 1991). A containment based order 
has been defined by Melton (Melton et al., 1990; Fenton, 1992), and a formal 
axiomatic validation is presented by Zuse (1992). An experimental axiomatic 
testing could be carried out along the framework described in this chapter, e.g. 
for maintainability and structural properties. 

                                                 
25  Chapter 6 of this thesis 
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The main point presented in this chapter is the role of representation axi-
oms in the diagnostic testing (Luce, 1990) of the order of attributes of software 
entities. Inconsistencies can be localised. They may hint at anomalies in the 
experiments or weaknesses in the theory: they can be used in the development 
of the conceptual domain, e.g. in the choice of alternative abstractions. It has 
been shown that axiomatic testing may well contribute to the validation of 
software metrics, both formally and empirically. 
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Chapter 8 
 
 
 

8. Validation in the Software Metric Development  
     Process 26  

In this chapter the validation of software metrics will be examined. Two ap-
proaches will be combined: representational measurement theory and a valida-
tion network scheme.  The development process of a software metric will be de-
scribed, together with validities for the three phases of the metric development 
process. Representation axioms from measurement theory are used both for the 
formal and empirical validation. The differentiation of validities according to 
these phases unifies several validation approaches found in the software met-
ric's literature.  

8.1 Introduction 

As can be concluded from the plethora of software metrics, it is rather easy to 
conceive some software metric and to obtain numbers with such a metric, for 
example in the field of complexity measures. However, it is less clear that all 
these metrics are really good measures. To establish the quality of measures 
they have to be validated. It has been remarked that there are as many met-
rics as there are computer scientists27. A paraphrase of this statement is that 
there are as many types of validation as there are software metrics. Validation 
is defined as assessing the extent to which a measure really measures what it 
purports to measure (Fenton, 1991). However, this is a rather tautological 
formulation (Berka, 1983), and validation has to be operationalized in practice. 

                                                 
26 This chapter is a shortened version of: K.G.van den Berg & P.M. van den Broek (1995), Axio-
matic Validation in the Software Metric Development Process, in: A.Melton (Ed.), Software Meas-
urement: Understanding Software Engineering, London: Thomson, Chapter 10. 
27 Ascribed to S.D.Conte 
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In this chapter, the development of a software metric will be traced with an 
explication of different aspects of validation. A simplified framework for soft-
ware measurement will be used (see Figure 8.1). 
 

             
entities abstractions

m' a m

softwarenumbers numbers

external attribute internal attribute

 

Figure 8.1  Framework for software measurement 

Software entities will be considered: products, processes or resources (Bush & 
Fenton, 1990). Data on an external attribute (e.g., maintainability, reusability) 
of these entities are collected with some measure m', the quantified criterion 
(Melton et al., 1990). This external attribute will be related with some internal 
attributes, such as size or structure. The internal attribute is measured with a 
metric function m on abstractions of the software entities. 

Kaposi (1990) has given an account of the role of measurement theory in 
software engineering. Five parts in the planning of measurement are distin-
guished: 1. The problem definition: designating the target objects and key 
properties that must be measured. 2. The modelling: a model description of the 
target set with reference to the key properties. 3. The forming of the empirical 
relational system: describing the model by means of an observable relation be-
tween the objects in terms of the selected key properties. 4. The definition of 
the formal relational system: selecting the system in which the measured re-
sults are to be represented. 5. The validation of the results of the measure-
ments. 

In this chapter, two approaches will be brought together: the validity net-
work scheme, which resembles Kaposi's analysis, and the representational 
measurement theory. In the validity network scheme, aspects of validity are 
differentiated for subsequent phases of the research process. In a case study, 
axioms from the measurement theory will be validated, both formally and em-
pirically, according to this scheme. The case itself is of interest to researchers 
in the field of programming methodology (van den Berg et al., 1993). More 
general, the case is used to exemplify the application of representational 
measurement theory and aspects of validation in software measurement.  

As remainder of this section, the representational measurement will be in-
troduced briefly (section 8.1.1), followed by the validity network scheme (sec-
tion 8.1.2) and the case study (section 8.1.3). 
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8.1.1 The representational measurement theory 

The representational approach has been used in software measurement (e.g., 
Baker et al., 1990; Fenton, 1991; Melton, 1990; Bieman et al., 1992; Melton, 
1992; Zuse, 1992). Some basic concepts in this measurement theory (Krantz et 
al., 1971; Finkelstein & Leaning, 1984; Suppes et al., 1989; Luce et al., 1990) 
will be defined according to Roberts (1979). A pivotal concept is the order pre-
serving mapping between relational structures. A short introduction to the 
representational measurement theory has been given in Chapter 7.1. 

8.1.2 The validity network scheme 

According to Brinberg and McGrath (1985), three domains can be distin-
guished in the research process: the substantive domain, the conceptual do-
main and the methodological domain. Each domain is defined by its elements, 
the relations between the elements, and the embedding system. The embed-
ding system refers to the set of assumptions within which these elements and 
relations are studied.  

In software measurement, the substantive domain consists of the empirical 
relational structure in the framework (Figure 8.1), together with the embed-
ding system: the actual context of the software entities (e.g., industry, train-
ing). The conceptual domain consists of the other relational structures in the 
framework. The embedding system in the conceptual domain is called the 
paradigm. For example, structure metrics are based on the assumption of the 
compositionality of the structural properties. The methodological domain is 
primarily concerned with the mapping of the empirical relational structure 
into a numerical relational structure. The embedding system in this domain is 
the research strategy, for example the use of field studies or controlled experi-
ments.  

The research process itself consists of three phases: the generative or pre-
study phase, the executive or central phase, and the interpretative or generali-
sation phase (Table 8.8). 
 

 domain  
phase  

substantive conceptual methodological 

generative valuation validities 
executive correspondence validities 

interpretative generalisation validities 

Table 8.8  The validity network scheme 
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In each domain of each phase, there are specific aspects of validity depicted in 
the validity network scheme. In the generative phase, the valuation validities 
are of primary concern, in the executive phase the correspondence validities, 
and in the interpretative phase the generalisation validities. A description of 
the various aspects of these validities will be presented in the elaboration of 
the case study. 

8.1.3 The case study 28 

In order to make the discussion of the different aspects of validation concrete, 
a case study will be presented related to a specific kind of software entities: 
software documentation. Proper documentation presumably has an impact on 
important quality aspects, such as maintainability and reusability. There is an 
interest in objective data on the impact of documentation. For the program 
code, the documentation problem is obvious. Besides documentation in natural 
language, there is a tendency to formalise documentation. On procedural level 
this can be done with for example preconditions and postconditions. Another 
possibility is the use of explicit typing by the programmer. In this case, the 
programmer provides information about the type of the objects in the program. 
(This is opposed to implicit typing, where the computer carries out the check of 
types as can be derived from the code.) This form of documentation not only 
may have an impact on the reliability of the software, but also on the compre-
hensibility to human readers of the programs (reviewers, maintenance pro-
grammers). In the case study, documentation in the form of explicit typing will 
be considered. The software entities are type expressions in the functional pro-
gramming language Miranda29. Type expressions themselves have a certain 
degree of (cognitive) complexity: they are easy or difficult to comprehend. The 
comprehensibility will be taken as the external attribute. The internal attrib-
ute is the structure of type expressions. The relationship between the compre-
hensibility of type expressions and their structural properties will be investi-
gated. 

8.1.4 Overview 

This chapter is organised as follows. First, the generative phase of a software 
metric will be described (section 8.2). More details about the software entities 
in the case study, the type expressions, will be given. Furthermore, the model-
ling of the structure of type expressions and the measurement of the compre-

                                                 
28 This is the same case study as described in Chapter 7 of this thesis 
29 Miranda is a trademark of Research Software Ltd. 
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hensibility will be elaborated on. The subsequent section 8.3 will deal with the 
executive phase in the development of the software metric. The actual collec-
tion of data on the external attribute, the comprehensibility, will be described. 
The deterministic and probabilistic testing of axioms will be exemplified. The 
structure metric function will be calibrated and used for prediction of the com-
prehensibility. The interpretative phase in the following section 8.4 will elabo-
rate on the generalisation of the results obtained in the foregoing phases. The 
final section 8.5 discusses the relation of axiomatic validation presented in this 
chapter to other validation approaches. 

8.2 The generative phase 

Consecutively, the substantive domain, the conceptual domain and the meth-
odological domain in the generative phase will be described. For each domain, 
the elements, the relations and the embedding system will be given. This sec-
tion will be concluded with a discussion of the valuation validities in this 
phase. 

8.2.1 The substantive domain 

An outline of the substantive domain implies the phenomena, the observed pat-
terns and the context in 'the real world'. The phenomenon to be studied is the 
comprehensibility of type expressions, which has been introduced in Chapter 
7.2. For example, the type of a function split is: 
 
 split :: (num → bool) → [num] → ([num],[num]) 
 

Several observations have been made with respect to the role of explicit types 
in programming, e.g.  
 

Miranda scripts often contain type declarations as these are useful for docu-
mentation and provide an extra check, since the type checker will complain if 
the declared type is inconsistent with the inferred one. (Turner, 1986) 

Types impose constraints that help to enforce correctness. Typing enforces a 
programming discipline on the programmer that makes programs more 
structured and easier to read. (Cardelli & Wegner, 1985) 

Judicious placement of type signatures is a good idea, since it improves read-
ability and helps bring programming errors to light. (Hudak & Fasel, 1992) 



130 Chapter 8 

Typing would make the programmer think about what kind of parameters a 
function will be used for and, also, would provide more information about 
how the program worked to anyone reading or maintaining it at a later 
stage. (Kosky, 1988) 

Type declarations form an important clue to the understanding of functions in 
a program. They give a partial specification of the function: the type of its ar-
guments and the type of the result. The complexity of the type declaration 
might give an indication of the complexity of the task to be performed by the 
function. 

In the 'real world model' (Maki & Thompson, 1973) restrictions will be im-
posed on the 'real world' entities and phenomena. In the case study the type 
expressions will be restricted to so called simple type expressions (no type 
variables, no type synonyms, no abstract data types: see Chapter 7.2). 

Type expressions are studied in the context of programs developed in an 
academic environment. It is evident that comprehensibility depends on the ex-
perience of the reader. The case study is carried out with novice Miranda pro-
grammers with corresponding proficiency. Only structural properties of simple 
type expressions in Miranda in relation with their comprehensibility to novice 
programmers are examined. 

8.2.2 The conceptual domain 

The second domain, the conceptual domain, implies the concepts, the relations, 
and the conceptual paradigm. The concepts will be given in a relational struc-
ture with relations on abstract type expressions. The conceptual paradigm is 
the representational measurement theory as described above, and the composi-
tionality of the structural properties, as expressed in structure metrics (Fenton 
& Kaposi, 1989). 

8.2.2.1 The abstraction 

In the conceptual domain a relational structure (A, R1,...,Rn) is defined. Set A 
consists of abstract type expressions;  R1,...,Rn are relations on abstract type 
expressions. In some cases, the corresponding operation of a relation will be 
used in the relational structure (cf Roberts, 1979: 41). These operations are 
called concatenation operators or constructors.  

The mapping of simple type expressions to abstract type expressions is de-
scribed in Chapter 7.3.1. For example, the abstraction of the type of the func-
tion split is: 
 
 F [ F [N,B], L N , T {L N, L N}] 
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with respectively: L the list type constructor; F the function type constructor; T 
the tuple type constructor; C the standard type char (not used is this example); 
N for num and B for bool. Next to the constructors, [...] denotes an ordered list 
of abstract type expressions, and {...} denotes a multiset.  

There are alternative abstractions discussed in van den Berg et al. (1993). 
The choice between abstractions of entities is determined by the actual use of 
the abstractions: the establishment of a good correspondence between an in-
ternal attribute based on these abstractions, and an external attribute of the 
entities. 

8.2.2.2 The containment relation and the metric function 

The containment relation on abstract type expressions, denoted by p , has 
been defined in Chapter 7.3.2. The containment relation p  on type expressions 
is a partial order.  

For abstract type expressions, a linear structure metric function m is de-
fined in Chapter 7.3.3 : 
 
 m(C)   =  cC        
 m(N)    =  cN         
 m(B)    =  cB        
 m(T{t1,...,tn}) =  cT + m(t1) + ... + m(tn)  
 m(L t)   =  cL + m(t)      
 m(F[t1,...,tn]) =  cF + m(t1) + ... + m(tn)  
 

With this function m, a new relation pm on type expressions is defined as fol-
lows: 
 
 ta pm tb   ⇔  m(ta) ≤ m(tb)     
 

The relation pm is an extension of the containment relation. From a measure-
ment theorem it has been shown that ((texp ,pm), (Re, ≤), m) is an ordinal 
scale.  
 
An abstraction of type expressions and a containment relation on abstract type 
expressions have been defined. An extension of this relation derived from a 
structure metric function provides measurement of the internal attribute 
structure of type expressions on an ordinal scale. This allows the investigation 
of a correspondence of the extension with the empirical order as given by the 
quantified criterion, which also maps on (Re,≤). In the following section, the 
measurement of the external attribute, i.e. the comprehensibility of type ex-
pressions, will be discussed. 
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8.2.3 The methodological domain 

In this section, the methodological domain - which comprises the measures, 
comparison techniques and the research strategy - is described. The collection 
of data on the external attribute of the software entities will be addressed. The 
external attribute has to be operationalized by some measure. 

There are several approaches to the measurement of comprehensibility of 
programs. In the case study, one measure has been chosen for the comprehen-
sibility of type expressions (van den Berg et al., 1993): the time in seconds 
needed for a subject to read a given type expression and to conceive and type-
write an instance of an object with exactly this type in the 'standard' pro-
gramming environment. The time between showing the type expression on 
screen and the completion of the answer is measured automatically. After-
wards, with the type checker of the programming system, the answer is 
marked as correct or incorrect. 

The strategy for data collection is that of controlled experiments, as op-
posed to for example field studies. Controlled experiments have been chosen to 
have a better control over the instances of type expressions, and to have better 
control over the conditions under which the comprehensibility is measured. If 
a vector of measures is used, one has to compare the relative merit of each 
measure. This is not carried out in this exploratory study. 

8.2.4 Validities in the generative phase 

The validities in the generative phase are valuation validities: establishing the 
'value' of elements, relations and embedding systems in each domain. In all 
domains there are validation criteria, which may be mutually conflicting. They 
are all desirable, but they cannot be maximised at the same time (Brinberg & 
McGrath, 1985). 
 
Valuation Validition in the Substantive Domain 

Three general criteria for values in the substantive domain are: the effective-
ness, the cost and the quality. The validity of the chosen phenomena and pat-
terns have to be considered: e.g., the value of documentation in software devel-
opment; the value of type declarations in software documentation; the value of 
comprehensibility of type expressions. Furthermore: what is the expected im-
provement of the software quality by the use of good documentation; what is 
the cost of good documentation; what is the value and the cost of quantitative 
assessment of documentation quality. Finally, what is the 'value' of the chosen 
context with restrictions on the real world to obtain the real world model. On 
one hand there are restrictions on the documentation: software documentation 
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- formal documentation - type declarations - simple type expressions; on the 
other hand on the programmers: academia - novice programmers. 
 
Valuation Validition in the Conceptual Domain 

The three criteria in the conceptual domain are: parsimony, the use of fewer 
concepts and fewer relations in the interpretation of the problem; scope, the 
range of the problem being covered by the concepts (content validity); and dif-
ferentiation, the amount of detail of the problem that can be interpreted with 
the concepts (construct validity). A prerequisite value is the consistency of the 
concepts and relations.  

Even in a small scale case study as presented in this chapter, there are 
many concepts introduced and used: from the representational measurement 
theory, from programming theory to describe type expressions and the abstrac-
tion of type expression with the containment relation and the metric function. 
A size metric instead of the structure metric would probably require fewer con-
cepts. The formal validation comprises the check on consistency of the concepts 
used. The scope and differentiation of the concepts are apparent in the given 
mapping rules from the real world model to the abstractions. 
 
Valuation Validition in the Methodological Domain 

In the methodological domain, the three mutually conflicting criteria are: pre-
cision, i.e. the accuracy of the measurement and the amount of control of the 
variables; realism of the context in which the information is obtained in rela-
tion to which that information is intended to apply or to be used; and gener-
alisability with respect to the chosen entities and attributes in the problem. 
The chosen research strategy has to result in reliable data on the phenomena. 
In this exploratory study, controlled experiments have been chosen. If data are 
to be applied, e.g. in metric tools in industrial practice, field studies will be re-
quired. The value of a measure has to be established by comparison with other 
measures (the criterion validity). Only one measure for the comprehensibility 
has been used in the case study. The realism of the context in this study can be 
traced back from the given abstractions and restrictions on the real world. 

The analysis of data will be derived from the axioms that have been stated 
in the conceptual domain in the previous section. In the executive phase, it has 
to be established whether or not comprehensibility of type expressions can be 
described in a consistent relational structure, in order to resolve the scale of 
measurement and to establish the correspondence with relations in the con-
ceptual domain. 
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8.3 The executive phase 

The first step in this phase is the collection of quantitative data for the ob-
served phenomena as described in the previous section. The measure will be 
used as a criterion for the empirical relation between the entities in the given 
context. Subsequently, the data obtained with this measure will be analysed 
and the correspondence will be established with the relations in the conceptual 
domain. The section will be concluded will a discussion of the correspondence 
validities in this phase. 

The experiments and the empirical order have been described in Chapter 
7.4. The following approaches in the analysis of the data have been used. 
Firstly, a global analysis has been given based on the average time measured 
for each type expression (Chapter 7.4.1). Secondly, an axiomatic analysis of the 
preference of each subject between pairs of type expressions has been de-
scribed with a test on intransitive group preferences (Chapter 7.4.2.1). Finally, 
an axiomatic analysis based on the relative frequencies of these preferences 
has been considered with a test on stochastic transitivity (Chapter 7.4.2.2). In 
the same section, measurement errors have been treated with a threshold 
probability and semiorders. 

From this analysis of the empirical order of type expressions with respect to 
the external attribute comprehensibility, it can be concluded that -- for subsets 
of type expressions -- the measurement of time to find an instance of a given 
type, results in an ordinal scale. 

8.3.1 Calibration 

For each of the type expressions in the data set, an expression can be derived 
from the metric function m, as defined in section 8.2.2.2. For example, the 
metric value for the abstraction of the type expression of the function split 
yields the expression 
 
 1 × cT + 2 × cF + 3 × cL + 4 × cN + 1 × cB + 0 × cC  
 

This expression can be equated to the average measured time for the correct 
responses. With linear regression analysis of these equations for each type ex-
pression in the experiment, the calibration of the constants cT, cF, cL, cN, cB, cC 
has been obtained (cf. Chapter 6.4.3). 

8.3.2 Prediction 

A second data set has been obtained with subjects different from the first set, 
and with different type expressions. The calibrated metric function of the pre-
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vious section is used to calculate the time for each type expression. The Pear-
son product-moment correlation coefficient (Guilford & Fruchter, 1978) be-
tween the measured values and the calculated values is 0.80. The related fore-
casting efficiency is 40%; i.e. a reduction in variance of the predicted compre-
hensibility is achieved by using the calculated metric value. It is also possible 
to compare the ranks of the measured and calculated values. The Spearman 
rank correlation coefficient is 0.74. From these results it can be concluded that 
there is a reasonable good agreement between the measured and predicted 
values in the experiment (cf. Chapter 6.4.3). 

8.3.3 Discussion 

The comprehensibility of simple type expressions has been operationalized as 
a time measurement. The ranking of the average time is in agreement with a 
simple extension of the partial order obtained for the corresponding abstract 
type expressions, despite a rather large standard deviation in the measured 
values, as has been described in Chapter 7.4. Axiomatic analysis has been 
used to localise inconsistencies in the experimental data: e.g. intransitive 
group preference. An ordinal measure has been calculated for a consistent data 
set. Incomplete data sets have been analysed with a probabilistic consistency 
axiom: the weak stochastic transitivity. An ordinal measure has been estab-
lished based on these probabilistic data. Measurement errors have been 
treated with a threshold probability and semiorders. The order obtained in this 
way shows a deviation of the previous order and appears to have more ties. 
Calibration of the metric function, as defined for abstract type expressions, has 
been carried out with standard regression analysis. The prediction of the com-
prehensibility with this calibrated metric function shows a good agreement 
with the measured values from an independent data set. 

8.3.4 Validities in the executive phase 

In the executive phase, the validity of the correspondence between the different 
relational structures has to be established: the correspondence validities.  
Moreover, the experimental design used in the collection of data has to be vali-
dated (design validity). The main emphasis of the case study has been on the 
correspondence between the relational structures as given in Figure 8.1. The 
correspondence between the empirical relational structure with the compre-
hensibility of type expressions and the numerical relational structure of the 
time measurement has been established. This correspondence has been vali-
dated by examining the representation axioms from measurement theory. Fur-
thermore, the correspondence between the two numerical relational structures 
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has been validated by the calibration and prediction with the metric function. 
From this analysis based on standard statistical techniques, it has been con-
cluded that there is a good correspondence between the empirical relational 
structure and the formal relational structure with abstract type expressions 
and the containment relation. The correspondence of real world software 
documentation with the comprehensibility of simple type expressions has not 
been validated in the case study. This will be considered in the following 
phase. 

8.4 The interpretative phase 

In this follow-up phase, the third phase in the development process, the set of 
findings obtained in the executive phase are interpreted. Furthermore, the re-
peatability of the findings, the range of variation of elements and relations 
(from each of the domains) over which the set of findings holds, and bounda-
ries beyond the set of findings do not hold, are explored.  

The analysis in this case study has been restricted in many ways: the sub-
jects in the experiment (novice programmers), and the type expressions (no 
grouping brackets, no type variables, no type synonyms). Furthermore, alter-
natives of the abstraction function are not considered. Moreover, only one 
comprehensibility measure has been used. This leads to questions of generali-
sation validities. 

8.4.1 Validities in the interpretative phase 

The validities in the interpretative phase are generalisation or robustness va-
lidities. For each domain this validity is the extent to which the scope and lim-
its of a set of empirical findings can be specified with respect to the elements 
and relations in that domain. Generalisation validities for each domain ad-
dresses the following aspects. Replication: would the same set of findings occur 
if the study is repeated with the same set of elements and relations? Conver-
gence: would the same set of findings occur if certain facets of elements and re-
lations are varied systematically? Differentiation or boundary search: if a dif-
ferent set of findings occurs with certain facets of elements and relations var-
ied systematically, can these differences be explained with the relational sys-
tem? It is not only important to look for the conditions under which the find-
ings will fit the hypothesis, the invariance, but also try to identify and explain 
the conditions under which the findings disconfirm the hypothesis, the failures 
of invariance's. 

To give some examples: If another measure for comprehensibility had been 
used, would the same order be found? Would a size metric instead of the struc-
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ture metric yield a good correspondence with comprehensibility? Is there an 
influence of the recognition of the type declaration of often used standard func-
tions? What is the influence of programming proficiency on the order of type 
expressions: novices versus experts? 

Another important aspect is the generalisation of the approach outlined in 
this chapter to other software entities with other attributes. There seems to be 
at least one important field where this approach could be successful. This is 
the domain of complexity measures based on flowgraph modelling. An ordering 
of flowgraphs is given by Bache (see Fenton, 1991). A containment based order 
has been defined by Melton (Melton et al., 1990; Fenton, 1992), and a formal 
axiomatic validation is presented by Zuse (1992). An experimental axiomatic 
validation could be carried out along the framework described in this chapter, 
e.g. for maintainability and structural properties. 

There is also a questioning of the conceptual paradigm chosen in this chap-
ter: representational measurement theory. Although this approach has a wide 
adherence in especially natural science, there are also meta-theoretical limita-
tions, among others the absence of criteria to chose between alternative repre-
sentations (Roberts, 1979). Another critical observation is made by Guttman: 

There is much to be learned from exploring axioms and their formal conse-
quences. But there remains the danger of seeking data merely to fit axioms. 
(Guttman, 1971; cited in Schwager, 1988). 

8.5 Relation with other validation approaches 

There are two types of conclusions: firstly, on the topic of the case study itself, 
i.e. the comprehensibility of type expressions; secondly, on the validation ap-
proach as exemplified by the case study. In regard to the first point: some con-
clusions have been given in the discussion section of the executive phase and 
in the interpretative phase. As has been described in Chapter 10, the main 
point is the role of representation axioms in the diagnostic testing (Luce, 1990) 
of the empirical order of the comprehensibility of type expressions. Inconsis-
tencies can be localised. They may hint at anomalies in the experiment or 
weaknesses in the theory: they can be used in the development of the concep-
tual domain, e.g. in the choice of alternative abstractions of type expressions. 

Other approaches to the validation of software metrics can be found in the 
literature. Gustafson et al. (1992) present a classification of validation studies 
of software metrics. In their view, validation checks the predictive abilities of a 
measure against a dependent variable, while verification checks the reason-
ableness of the measure. For each approach it is indicated: whether verifica-
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tion or validation is achieved, whether the approach produces a dependent 
variable, whether there is an underlying theory used or produced, and whether 
the results of the approach are generalizable to other data or environments. 
They distinguish the following (not disjunct) approaches: 1. The shotgun ap-
proach: using statistical correlation techniques between many measures. 2. 
The standard dependent variable approach: based on a theory with data from 
completed projects. 3. The controlled-experiments approach: based on a theory 
with data from experiments. 4. The verification approach: using formal proper-
ties of measures. 5. The exploratory approach: in which a large set of meas-
urements is grouped with factor analysis. 6. The intuitive approach: in which 
measurements are correlated with judgement of experts. 7. The goal-oriented 
approach: in which a particular property has to be optimised. 8. De facto ap-
proaches, which fail to be classified in one of the previous categories. They con-
clude that the lack of planning for validation in the development of measures 
will result in measures that have limited usefulness and questionable validity.  

Schneidewind (1992) presents a methodology for validating software met-
rics, from the point of view of the metric user. He discusses six validity crite-
ria: 1. Association: the extent to which a variation in a software attribute is 
explained by the measure. 2. Consistency: the strength of the rank correlation 
between a software attribute and a measure. 3. Discriminative power: the 
strength of classification of a software attribute with a measure. 4. Tracking: a 
monotonic relation between attribute and measurement. 5. Predictability: the 
accuracy of predicting an attribute with a measure. 6. Repeatability: the suc-
cess rate of validating the measure for an attribute. The six criteria support 
the three functions of measurement: assessment, control and prediction. The 
criteria provide a rationale for the validation, the selection and application of 
metrics. 

As compared with these approaches, in this chapter the emphasis is on the 
validation of representation axioms in the different phases of the software 
metric development process, both formally and empirically.  This approach is 
especially useful in a domain with a weak theoretical foundation. Validities 
have been differentiated in the validity network scheme. The criteria listed by 
Schneidewind can be found in this network. The development process is usu-
ally not a linear process, but will be iterated in a spiral development. The ap-
proaches distinguished by Gustafson et al. (1992) may have their own merits 
in different phases of this spiral process. A standard on validation issues in 
software measurement is urgently required (cf. American Psychological Asso-
ciation, 1954). 
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Chapter 9 
 
 
 

9. Programmers' Performance on Structured  
     versus Nonstructured Function Definitions 30 

A control-flow model for functional programs is used in an experimental com-
parison of the performance of programmers on structured versus nonstructured 
Miranda function definitions. The experimental set-up is similar to the Scanlan 
study (1989). However, in the present study, a two-factor repeated measures de-
sign is used in the statistical analysis. The control-flow model appears to be 
useful in the shaping of the experiment. A significantly better performance has 
been found for structured function definitions on both dependent variables: the 
time needed to answer questions about the function definitions and the propor-
tion correct answers. Moreover, for structured function definitions, a counter-
intuitive result has been obtained: there are significantly fewer errors in larger 
definitions than in smaller ones. 

9.1 Introduction  

There is a long standing discussion on structured programming in the litera-
ture (e.g. the survey of Vessey & Weber, 1984). Most of this research has been 
carried out in the domain of imperative programming. This chapter will pre-
sent an experiment on programmers' performance in the domain of functional 
programming for structured versus nonstructured function definitions. The 
set-up of this experiment is similar to the Scanlan study (1989) in his compari-
son of structured flowcharts and pseudocode. However, our experimental de-
sign and statistical analysis are different from this study: these differences 
will be explained in the subsequent sections. The characterisation of the struc-
ture of function definitions is based on a control-flow model as defined in a 

                                                 
30 K.G. van den Berg  & P.M. van den Broek (1996), Programmers' Performance on Structured 
versus Nonstructured Function Definitions, Information and Software Technology 38(7) pp 477-
492 
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previous paper (van den Berg & van den Broek, 1995a) (Chapter 5 of this the-
sis). The framework for experimentation in software engineering (Basili et al., 
1986) will be used in the following outline of the present study. 

The motivation of this study has been indicated above: an experimental 
comparison of programmers' performance on structured versus nonstructured 
‘programs’ in the domain of functional programming. The actual objects in this 
study are Miranda function definitions (Turner, 1986). The attribute structure 
of function definitions will be defined in terms of a control-flow model (van den 
Berg et al., 1995a). The control-flow in function definitions is determined by 
patterns and guards, as will be described in sections 9.2 and  9.3.  

The purpose of this study is to validate empirically some programming style 
rules on the use of guards and patterns in function definitions with respect to 
programmers' performance. 

Pattern matching is one of the cornerstones of an equational style of defini-
tion; more often than not it leads to a cleaner and more readily understand-
able definition than a style based on conditional equations [with guards]. 
(Bird & Wadler, 1988) 

One perspective in this study on programmers' performance is that of a formal 
technical review of coding or a code walkthrough: i.e. inspection of code written 
by another programmer (Pressman, 1994). Programmers have to comprehend 
the code and make statements about the behaviour of the program. The do-
main of this study can be characterised as programming-in-the-small by novice 
programmers (Computer Science students). The scope of the study is that of a 
single programmer working on a single program-unit (a Miranda function 
definition). 

In the following section, patterns and guards in function definitions are de-
scribed in more detail, and in section 9.3 the control-flow model is recapitu-
lated. In sections 9.4 - 9.7 the experiment will be described, with the results in 
section 9.8, followed by a discussion and some conclusions. 

9.2 Function definitions 

A description of patterns and guards in Miranda function definitions is given 
in Peyton Jones (1987). An example is given in Table 9.1: a definition of the 
function split (the line numbers have been added). The function split returns, 
for given a predicate, i.e. a boolean function with type (* → bool),  and a list 
with type [*], a tuple with two components: the first component is the list with 
elements satisfying the predicate and the second component is the list with 
elements not satisfying the predicate. In line 1, the type of the function split is 
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given: it is a polymorphic function (a star * denotes a type variable). For ex-
ample, evaluation of the expression split even [2,4,7,4] yields the tuple  
([2,4,4],[7]).  
 
 
  split :: (* -> bool) -> [*] -> ([*],[*])     1 
  split p []                2 
    = ([],[])            3 
  split p (x:xs)            4 
    = (x : ys, zs ), if p x         5 
    = (ys, x : zs ), if ~ (p x)        6 
       where (ys,zs) = split p xs       7  
 

Table 9.1  Definition of the function split 

The second argument of the function split is a list. In the first clause of the 
definition (line 2-3), the pattern [ ] for an empty list is used for the selection of 
this clause. In the second clause (line 4-7), the non-empty list pattern (x:xs) is 
used. In the second clause there are two cases, one with the guard p x (line 5), 
the other with the guard ~ (p x). In the local definition on line 7, the tuple 
(xs,ys) is defined in terms of a recursive call of split. 

The patterns in this definition are disjoint: if one pattern matches, then 
there is no other pattern that will match. E.g., if the actual argument list 
matches the pattern [ ] then no other pattern will match, and the same applies 
to pattern (x:xs). Moreover, these patterns are exhaustive: for any argument 
there will be a pattern that will match. E.g., a list-argument is either empty 
and matches the pattern [ ], or it is non-empty and matches the pattern (x:xs). 
The guards in this definition are disjoint as well: if p x is True then no other 
guard is True; moreover, these guards are exhaustive: either p x is True or ~(p 
x) is True.  

In this definition of split, the meaning of the definition is independent of 
the textual order of the clauses and cases. However, quite commonly, the 
meaning depends on the order of the clauses and the cases. Moreover, guards 
in Miranda function definitions may interact with pattern matching. There are 
few examples in the literature to demonstrate the latter.  

In the first example, the function funnyLastElt returns the first negative 
element of its argument list, or if there is no such element, it returns the last 
element of this list  (Peyton Jones, 1987) (see Table 9.2). If an argument list is 
not empty, then the first clause is selected and the guard x<0 will be evalu-
ated. If this condition is True, the function returns x; otherwise (because there 
is no other guard), the following pattern (x:[ ]) will be checked, and so on. The 
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meaning of the definition depends on the order of the clauses: e.g., if one ex-
changes the first clause with the last, the function does not satisfy the given 
specification anymore. 
 
 
  funnyLastElt :: [num] -> num 
  funnyLastElt (x:xs) = x, if x<0 
  funnyLastElt (x:[]) = x 
  funnyLastElt (x:xs) = funnyLastElt xs 
 

Table 9.2  Definition of the function funnyLastElt 

Another example is given by Holyer (1991) with an (unusual) definition of the 
Miranda standard function drop (see Table 9.3). The function is specified as 
follows: drop n xs removes the first n elements from the argument list xs; if n 
is not an integer, there will be a program error; if n is negative the argument 
list will be returned. 
 
 
  drop :: num -> [*] -> [*] 
  drop n xs         = error "fractional", if ~ integer n 
                 = xs, if n<=0 \/ xs=[] 
  drop (n+1) (x:xs) = drop n xs 
 

Table 9.3  Definition of the function drop 

In the second clause of this definition, there is a matching on the list pattern 
(x:xs) and on the integer pattern (n+1). The meaning of the definition depends 
on the order of the clauses as well as of the order of the guards. 

The interaction of patterns and guards implies that there have to be rules 
about the operational semantics. As stated above, for Miranda these rules are: 
patterns in a clause are evaluated from left to right, and guards in textual or-
der; and clauses are evaluated in textual order (Peyton Jones, 1987). Obvi-
ously, there is an operational bias in the language design of Miranda (Petre & 
Winder, 1990). The control-flow model (van den Berg & van den Broek, 1995a) 
captures the operational semantics of function definitions. 

Some programming style rules with respect to use of patterns and guards in 
function definitions can be found in the literature, each with a different 
strength: 
1. Use total function definitions (both exhaustive patterns and exhaustive 

guards: Plasmeijer & van Eekelen, 1994) 
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2. Use order independent clauses in function definition (Bird & Wadler, 1988; 
Peyton Jones, 1987) 

3. Use exhaustive patterns (Bird & Wadler, 1988) 
4. Use disjoint patterns (Holyer, 1991) 
5. Use order independent alternatives for each clause (Bird & Wadler, 1988) 
6. Use exhaustive guards (Plasmeijer & van Eekelen, 1994) 
7. Use disjoint guards (Plasmeijer & van Eekelen, 1994) 
One of such rules (see section 9.4) is the subject of experimental validation as 
will be described in the subsequent sections. First, the control-flow model will 
be recapitulated. 

9.3 Control-flow model 

Flowgraphs are used for the modelling of control-flow in imperative programs 
(Fenton, 1991). The nodes in the directed graphs correspond to statements in 
the programs, whereas the edges from one node to the other indicate a flow of 
control between corresponding statements. The stop node in a flowgraph has 
outdegree zero, and every node lies on some path from the start node to the 
stop node. The nodes with outdegree equal to 1 are called procedure nodes; all 
other nodes are termed predicate nodes. E.g., an elementary action is modelled 
as flowgraph P1 in Figure 9.1a; the if-then construct in a program is modelled 
as flowgraph D0 in Figure 9.1b; the if-then-else construct is modelled as flow-
graph D1 in Figure 9.1c. 
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Figure 9.1 Elementary flowgraphs and decomposition tree 

Flowgraphs can be concatenated (sequencing) to a new flowgraph; and flow-
graphs can be nested on each other. An example of nesting D0 onto D1 at node 
6 in Figure 9.1c, is given in Figure 9.1d. This is denoted as D1(D0), in which is 
abstracted from the node onto which is nested. Associated with any flowgraph 
is a decomposition tree which describes how the flowgraph is built by sequenc-
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ing and nesting elementary flowgraphs, such as D0 and D1. The decomposition 
tree of the flowgraph in Figure 9.1d is depicted in Figure 9.1e.  

 
The operational semantics of Miranda function definitions is captured in the 
control-flow model (van den Berg & van den Broek, 1995a). For example, the 
control-flow graph for the function definition split is given in Figure 9.2. 
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Figure 9.2  Annotated control-flow graph of the function split 

The four vertical lines indicate the kind of nodes in these flowgraphs: predicate 
nodes (outdegree 2) for patterns and guards, procedure nodes (outdegree 1) for 
the expressions, and finally the stop node (outdegree 0). For the predicate 
nodes, the True (T) and False (F) branches are indicated. Note that the lower 
(False) branch starting at the pattern (x:xs) is infeasible because either the 
pattern [ ] or the pattern (x:xs) will succeed: these two patterns are exhaustive. 
The same applies to the lower (False) branch starting at the guard  ~(p x): in 
any case, one of these guards will give the value True. However, in this model 
is abstracted from the actual content of the patterns and guards. 

Flowgraphs can be uniquely decomposed into a hierarchy of (inde-
composable) prime flowgraphs. E.g., the decomposition of the flowgraph given 
in  Figure 9.2 is D1(D0(D1(D0))). In this case, the depth of decomposition is 4. 
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We will give some additional definitions, as will be used in the description of 
the experiment in the following section. A path in a flowgraph is a sequence of 
consecutive nodes from the start node to the stop node. A D-structured path is 
given by a sequence of patterns followed by a sequence of guards, then possibly 
an expression node, and then the stop node. An X-structured path31 is a path 
that is not D-structured: i.e., a sequence in which a guard is followed by a pat-
tern. (In flowgraphs as drawn in Figure 9.2 and Figure 9.3, an X-structured 
path can be identified by an edge directed from right to left.) A D-structured 
path and an X-structured path are called similar if the D-structured path is a 
permutation of the X-structured path. A function definition is structured (D-
structured) if all paths in its flowgraph are D-structured; otherwise the defini-
tion is nonstructured (X-structured).  

Function definitions are called comparable if their flowgraphs contains the 
same predicate nodes (patterns, guards), and the expression nodes represent 
simple numeric constants. (Comparable functions need not to be semantically 
equivalent). Two example scripts with comparable definitions are given in 
Table 9.4. 
 
   
  || script 101 
  f :: [num] -> num 
 
  f (x:y:z:zs) = 1, if x>2 
  f (x:xs)     = 2 
  f xs         = 3 
 
  top = f [1,2,3] 
 
   
  || script 103 
  f :: [num] -> num 
 
  f (x:y:z:zs) = 1 
  f (x:xs)     = 2, if x>2  
               = 3, otherwise 
  f xs         = 4 
 
  top = f [3,4] 
 

Table 9.4  An X-structured function definition in script 101 and a comparable 
D-structured function definition in script 103 

                                                 
31 X refers to a prime other than D0 and D1 
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The flowgraphs of these function definitions32 are given in Figure 9.3. The 
function f in script 101 is X-structured: it contains an X-structured path (with 
the edge from the guard x>2 to the pattern x:xs). The function f in script 103 is 
D-structured: it contains only D-structured paths. 
 

a.   flowgraph of function f in script 101        
  

b.   flowgraph of function f in script 103        
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Figure 9.3  Flowgraphs of functions in script 101 and 103 

The evaluation of  top = f [1,2,3] in script 101 results in an X-structured 
path with the following sequence of nodes (length of path = 6): 
 
 < start node,(x:y:z:zs), x>2,(x:xs), 2, stop node > 
 

The evaluation of top = f [3,4] in script 103 results in a D-structured path: 
 
 < start node,(x:y:z:zs),(x:xs), x>2, 2, stop node > 
 

Moreover, these two paths are similar: the path in script 101 is a permutation 
of the path in script 103.  
 
The hypothesis is that programmers' performance on the D-structured path is 
better than on the similar X-structured path, and hence (this is our assump-
tion) that structured function definitions are better than comparable nonstruc-
tured function definitions. In the subsequent section, criteria for programmers' 
performance are established, and an experiment is described to test this hy-
pothesis. 

                                                 
32 The numbers refer to the script numbers used in the experiment (see section  9.6) 
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9.4 Experiment 

In this section the design of the experiment will be described. The aim of the 
experiment is to validate the following programming style rule: ‘Use structured 
function definitions instead of nonstructured ones’. In the experiment we will 
test the performance of programmers on structured versus comparable non-
structured function definitions. The experimental set-up is similar to the one 
used by Scanlan (1989) in the comparison of structured flowcharts and pseu-
docode. However, the experimental design and the statistical analysis pre-
sented here are different. These differences will be brought up in the subse-
quent sections. In section 9.4.1 and 9.4.2, we will consider the independent and 
dependent variables in our experiment, followed by a description of the ex-
perimental design (9.4.3), the statistical model (9.4.4) and the hypotheses 
(9.4.5). 

9.4.1 Independent variables 

The two independent variables in the experiment are the following: 
• The Size of a script with the function definition and the top expression. The 

three levels of Size, i.e. Small, Medium and Large, are characterised by the 
length of the path belonging to the top expression, the net lines of code of 
the scripts33 (NLOC), and some control-flow metrics (van den Berg & van 
den Broek, 1995a) (see Table 9.5). Despite the relatively small number lines 
of code, the function definitions - especially the larger ones - are rather com-
plicated  (e.g., McCabe’s cyclomatic complexity number and the depth of de-
composition). 

 
Metric 

Level 
path 

length 
NLOC #nodes McCabe's 

cycl comp 
depth of 

decomposition 
Small 6 5-6 7-8 4 2-3 
Medium 9 8-9 13-14 7 4-6 
Large 12 13-14 21-22 11 6-9 

Table 9.5  Properties of Small, Medium and Large function definitions 

• The Structure of the function definition in a script. The two levels of Struc-
ture are the nonstructured function definition (X-structured) and the struc-
tured function definition (D-structured), as described in section 9.3. 

                                                 
33 The blank lines and comment lines are not counted; the scripts also contain the type of the func-
tion and the top level expression (cf. Table 9.4) 



148 Chapter 9 

9.4.2 Dependent variables 

The basic condition in the experiment is: no time pressure, i.e. the subjects are 
allowed to spend as much time as they need to answer the questions (cf. 
Scanlan, 1989).  

The most basis task [in computer programming], and yet in some ways the 
hardest to measure, is program comprehension. (Moher & Schneider, 1982) 

The dependent variables in this experiment are two criteria on programmers' 
performance: 
• the time to answer (Time), i.e. the number of seconds the subjects viewed 

the script and spent answering the question about the script. This is a con-
tinuous random variable. 

• the correctness of the answer (Correctness), i.e. the answer given by the sub-
ject about the script is either correct or wrong. This is a binary random 
variable. 

In section 9.6, the questions about the scripts used in the experiment are de-
scribed in more detail. 

9.4.3 Experimental design 

The experimental design will be considered as a two-factor design with  two 
dependent variables and six treatments. A treatment corresponds to a combi-
nation of factor levels. The first factor is the Structure with two levels: struc-
tured (D) and nonstructured (X). The second factor is the Size with three levels: 
Small (S), Medium (M) and Large (L). The design has been given schematically 
in Table 9.6. 
 
Factor  Size 
 Levels Small  

S 
Medium  

M 
Large  

L 
 
Structure 

Nonstructured  
X 

treatment 
SX 

treatment  
MX 

treatment 
LX 

 Structured  
D 

treatment 
SD 

treatment  
MD 

treatment 
LD 

Table 9.6  Experimental design with factors, levels and treatments 

Each treatment in the design will be given to each subject (as in the Scanlan 
study, 1989). The subjects are viewed as a random sample from a population. 
This is a two-factor experiment with repeated measures on all treatments, 
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equal sample sizes, random subject effects and fixed factor effects (Neter et al., 
1990). (This is contrary to the one-factor repeated-measures design as con-
ceived by Scanlan). 
 
Factor  Size  
 Levels Small  

S 
Medium  

M 
Large  

L 
 

 
 
 
Structure 

Non- 
structured  

X 

µSX = 
mean for 
treatment 

SX 

µMX = 
mean for 

treatment 
MX 

µLX = 
mean for 

treatment 
LX 

µ.X = 
mean for 

factor level 
X 

  
Structured 

D 

µSD = 
mean for 
treatment 

SD 

µMD = 
mean for 

treatment 
MD 

µLD = 
mean for 

treatment 
LD 

µ.D = 
mean for 

factor level 
D 

  µS. = 
mean for 

factor level 
S 

µM. = 
mean for 

factor level 
M 

µL. = 
mean for 

factor level 
L 

µ.. = 
overall 
mean 

Table 9.7  Experimental design with treatment means and factor level means 

 
The number of levels for the factor Size is a (a=3); the number of levels for the 
factor Structure is b (b=2). The treatment mean at level j of Size and level k of 
Structure will be denoted by µjk with j ∈ {S, M, L} and k ∈ {X, D}. 
 
We will use the following point notation for the factor level means: 
 µj. = Σk µjk / b   and   µ.k = Σj µjk / a  
The overall mean is denoted by µ.. with 
 µ.. =  Σj Σk µjk / ab = Σk µj. / a = Σj µ.k / b  
The denotation for the treatment means and the factor level means are given 
in Table 9.7. 

9.4.4 Statistical model 

The following model will be used in the statistical analysis of the experimental 
design described in the previous section (Neter et al., 1990).  

Let yijk be the observed value on the dependent random variable Yijk for 
subject i (i ∈ [1..n]) for the factor A (here Size) at level j and the factor B (here 
Structure) at level k. 
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Then, we assume the following repeated measures model34  with: 
 Yijk = µ.. + ηi + αj + βk + γjk + εijk 
In this model, we assume that: 
 µ.. is the overall effect 
 ηi is the random effect of subject i 
 αj is the fixed effect of factor A (Size) at level j 
  αj = µj. - µ..  with j ∈ {S,M,L} 
 βk is the fixed effect of factor B (Structure) at level k 
  βk = µ.k - µ..  with k ∈ {X,D} 
 γjk is the interaction effect of factor A at level j and factor B at level k 
  γjk = µjk - µj. - µ.k + µ..  with k ∈ {X,D} and j ∈ {S,M,L} 
 εijk is the random error effect 
with: 
 µ.. is a constant 
 ηi are independent and normally distributed N(0, σ2 η) 
 αj are constants with Σk αj = 0 for all j 
 βk are constants with Σj βk = 0 for all k 
 γjk are constants with Σj γjk = 0 for all k and Σk γjk = 0 for all j 
 εijk are independent and normally distributed N(0, σ2 ) 
 ηi and εijk are independent 
 i ∈ {1,...,n}; j ∈ {S, M, L}; k ∈ {X, D} 
The properties of Yijk are the following: 
 the expected value E(Yijk) =  µjk = µ.. + αj + βk + γjk 
 the variance  var(Yijk) = σ2η + σ2

 the covariance  cov(Yijk ,Yij’k’) = σ2η   with not both j = j' and k = k' 
Thus, this repeated measures model assumes that the variable Yijk have con-
stant variance, and that any two treatment observations for the same subject 
in advance of the random trials have constant covariance. Any two observa-
tions from different subjects in advance of the random trials are independent. 
Finally, all random variables are assumed to be normally distributed. Once the 
subjects have been selected, repeated measures model assumes that all of the 
treatment observations for a given subject are independent - that is, that there 
are no interference effects, such as order effects or carry-over effects from one 
treatment to the next. 

9.4.5 Hypotheses 

The initial three hypotheses to be tested in this study are the following: 
whether or not there is an interaction effect of the factors Structure and Size 

                                                 
34 Only the main factor effects and the interaction effect between the main factors are considered 
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on each of the two dependent variables (Time and Correctness), and whether or 
not there is a main effect of each of these factors. There is interaction if the ef-
fect of the factor Structure on a dependent variable depends on the level of the 
factor Size, and vice versa. In Table 9.8, these null hypotheses with their al-
ternatives are stated in terms of the model; H0i denotes the i-th null hypothe-
sis, and Hai denotes the corresponding i-th alternative hypothesis. The level of 
significance α = 0.05. 
 
Factor Effects Null Hypothesis H0 Alternative Hypothesis Ha 
Structure × Size 
Interaction Effects 

H01: all γjk = 0 Ha1: not all  γjk equal zero 

Size 
Main Effects 

H02: all αj = 0 Ha2: not all αj  equal zero 

Structure 
Main Effects 

H03: all βk = 0 Ha3: not all βk equal zero 

Table 9.8  Hypotheses on Factor Effects 

Hypotheses on nine selected pairwise comparisons of treatment means on each 
of the two dependent variables will be tested as well, in particular if there is 
interaction. The specific null hypotheses, with the alternatives, are given in 
Table 9.9. 
 

 Treatment Null  
Hypothesis 

Alternative  
Hypothesis 

 Size at level Small H0
4 : µSX-µSD = 0 Ha

4 : µSX-µSD ≠ 0 

Structure Size at level Medium H0
5 : µMX-µMD = 0 Ha

5 : µMX-µMD ≠ 0 

 Size at level Large H0
6 : µLX-µLD = 0 Ha

6 : µLX-µLD ≠ 0 

 
 
Size 

 
Structure at level X 

H0
7 : µMX-µSX = 0 

H0
8 : µLX-µMX = 0 

H0
9 : µLX-µSX = 0 

Ha
7 : µMX-µSX ≠ 0 

Ha
8 : µLX-µMX ≠ 0 

Ha
9 : µLX-µSX ≠ 0 

  
Structure at level D 

H0
10: µMD-µSD = 0 

H0
11: µLD-µMD = 0 

H0
12: µLD-µSD = 0 

Ha
10: µMD-µSD ≠ 0 

Ha
11: µLD-µMD ≠ 0 

Ha
12: µLD-µSD ≠ 0 

Table 9.9  Hypotheses on Treatment Means for the variable Time 

The tests are carried out on the same data set, and therefore the tests are de-
pendent. We will set a family level of significance of α = 0.10. The individual 
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significance level for each hypothesis will be derived from this value by using 
one of the methods for multiple comparisons (Neter et al., 1990). 

9.5 Subjects 

All subjects in the experiment are first and second year students at the Uni-
versity of Twente in Computer Science or Business Information Technology: in 
total 103 students participated in the experiment. They all completed success-
fully at least one course on Functional Programming (Joosten et al., 1994). 

9.6 Objects 

The objects in the experiments are Miranda scripts with a function definition 
and a top expression. For each Size (Small, Medium and Large), an X-version 
of a script and a corresponding D-version is constructed (see Table 9.10). 
 

Nonstructured or X-version Structured or D-version 
an X-structured  

function definition  
+ 

a top expression with an  
X-structured path  

a comparable D-structured  
function definition 

+ 
a top expression with a similar  

D-structured path 
 

Table 9.10  The X-version and D-version of scripts 

The two paths in the two versions are similar: the X-structured path is a per-
mutation of the D-structured path. The length of the path (cf. section 9.3) is for 
Small scripts equal to 6; for Medium scripts: 9; and for Large scripts: 12. 
 
For each size, an X-version of a script is set up and a comparable D-version of 
this script. Two sets of comparable scripts are set up: e.g., script 101 is compa-
rable to script 102, and so on (see Table 9.11). 
 

Size  Small Medium Large 
Set 1 X-version 101 105 109 
 D-version 102 106 110 
Set 2 X-version 104 108 112 
 D-version 103 107 111 

Table 9.11  Two sets of scripts 
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Two sets are used in order to reduce practice effects (cf. Scanlan, 1989). A sub-
ject tested on an X-version out of the first set will be tested on the D-version 
out of the second set, and vice versa (see Table 9.12). 
 
 Small Medium Large 
group 1 101 X       103 D 105 X      107 D 109 X      111 D 
group 2 102 D       104 X 106 D      108 X   110 D      112 X 

Table 9.12 Scripts (X- and D-versions) for two groups of subjects 

An example of an X-version and a comparable D-version of small scripts 
(scripts 101 and 103) is given in Table 9.4. Two types of questions about these 
scripts can be distinguished: forward questions (for a given input to derive the 
possible outputs) and backward questions (for a given output to derive the con-
ditions on the input) (cf. Green, 1980). For each version an example question 
with the answer is given in Table 9.13. 
 
question script 101: X-version script 103: D-version 
 
forward 

the given input: [1,2,3] 
the conditions are: 
(x:y:z:zs) ∧ ¬ (x>2) ∧ (x:xs) 
the resulting output is: 2 

the given input: [3,4] 
the conditions are: 
(x:y:z:zs)  ∧ (x:xs) ∧ (x>2) 
the resulting output is: 2 

 
backward 

the given output: 2 
the conditions on the input are: 
((x:y:z:zs) ∧ (x:xs) ∧ (x>2)) ∨  
(¬(x:y:z:zs) ∧ (x:xs)) 

the given output: 2 
the conditions on the input are: 
¬(x:y:z:zs) ∧ (x:xs) ∧ (x>2) 
 

Table 9.13  Examples of forward questions and backward questions 

In the X-structured version (script 101) in Figure 9.3 there are two paths to 
expression 2; in D-structured function definitions there is only one path to 
each expression. As can be seen in this example with forward questions, the 
sequence of conditions in the X-version is a permutation of the conditions in 
the D-version. 

 
In this study, forward questions with simple numeric output expressions were 
applied to avoid problems with the skill of subjects to draw up the conditions 
on the input. In the experiment, the question for each script is: 

 Give the value of top (1 or 2 or ... or 99 if top yields a program error). 
The actual test objects for each subject in the experiment are six Miranda 
scripts each with the question about the value of top. 
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9.7 Procedure 

The following procedure in the experiment has been established (after a pilot 
study with 8 expert programmers) (cf. Scanlan, 1989): 
• the subjects did the experiment in groups of about 20, each subject at his 

own PC (UNIX on PC’s connected to SUN-workstations) 
• the subjects answered the questions as an assignment in a regular labora-

tory session in the computer room 
• the subjects have been assigned randomly to one of the groups of scripts (see 

Table 9.12) 
• the instruction was given on screen: there is no influence of the variability 

of a human instructor 
• four example scripts, with the question about the value of top, were offered 

in fixed order to each subject; the feedback on the answers is just 'correct' or 
'not correct' 

• after the instruction and the example questions, the six treatment scripts 
with questions were offered to the subjects 

• for each subject, a random permutation was used of these six scripts: this is 
done to balance out practice and fatigue effects; no feedback is given on the 
answers to these questions 

• all subjects serve in all treatments (D- & X-structured for small, medium 
and large scripts) resulting in a repeated measures design 

• the collection of the data on time and correctness of the answer has been  
automated (resulting in a log-file for each subject and a file with data of all 
subjects) 

9.8 Results 

In this section, the results of the experiment will be given: the outliers in sec-
tion 9.8.1, the analysis of variance for Time in section 9.8.3, and for Correct-
ness in section 9.8.4. The experiment has been carried out with 103 subjects. 
The average time they spent on the whole experiment (instruction, example 
scripts, treatment scripts) was 10.5 minutes (standard deviation 2.5 minutes). 

9.8.1 Outliers 

For each subject there are 6 measurements on the dependent variable Time, 
i.e. for each of the treatments. For 103 subjects there are 618 time measure-
ments. Outliers on the measurement of Time have been detected on the basis 
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of the externally studentized residual35 (Myers & Well, 1991). If for a subject 
the absolute value of the residual exceeds the value 3.0 then all measurements 
for this subject are disregarded. There appear to be 9 outliers36 with the resid-
ual value ≥ 3.0 for 9 different subjects. It had been noticed that some subjects 
were distracted by external events during the experiment in the computer 
room: this could be a reason for the extreme outliers. The data of these sub-
jects is disregarded, so of the remaining 94 subjects 564 time measurements 
are used in the testing of the hypothesis, together with the related measure-
ment of the correctness. 

9.8.2 Analysis of variance 

The effects of the factors Size and Structure on the dependent variables Time 
and Correctness have been established. The strategy for this analysis is given 
by (Neter et al., 1990: Ch 19) using the variance of the data. A template of an 
ANOVA table is given in Table 9.14 (cf. Neter et al., 1990), with a = the num-
ber of levels of factor A (Size: a = 3); b = the number of levels of factor B (Struc-
ture: b = 2); n = the sample size (the number of subjects for each treatment: n = 
94). The sums of squares for each of the dependent variables have been calcu-
lated from the data37. 
 
Source of 
Variation 

Sum of Squares 
SS 

degrees of freedom  
df 

Mean Squares 
MS = SS / df 

Subjects SSS n-1 MSS = 
SSS / (n-1) 

Factor A SSA a-1 MSA = 
SSA / (a-1) 

Factor B SSB b-1 MSB = 
SSB / (b-1) 

AB  
Interactions 

SSAB (a-1)(b-1) MSAB = 
SSAB / ((a-1)(b-1)) 

Error SSE (n-1)(ab-1) MSE = 
SSE /((n-1)(ab-1)) 

Total SSTO abn-1  

Table 9.14  Template ANOVA table for Two-Factor Repeated Measures Design 
with Repeated Measures on Both Factors 

                                                 
35 In SPSS called the studentized deleted residual 
36 Number of outliers on Time per treatment: SX 1; SD 2;  MX 1;  MD 3;  LX 0;  LD 2. 
37 with SPSS for Windows   
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In the subsequent sections, the influence of the factors Size and Structure will 
be analysed for each of the dependent variables Time and Correctness: 
1. A summary statistic will be given with treatment means and factor level 

means variable (with sample standard deviations) according to Table 9.7. 
2. The treatment means for structured and nonstructured function definitions 

will be displayed as function of the Size. 
3. An analysis of variance will be presented according to Table 9.14. 
4. The hypotheses on the interaction effects and the factor effects will be 

tested. 

9.8.3 Time 

For each treatment, the sample mean Time in seconds (and the standard de-
viation) is given in Table 9.15, together with the factor level means. The sam-
ple treatment mean  mjk = Σi yijk / n, where yijk is the observed value on the de-
pendent variable Yijk. 
 
Factor  Size  
 Levels Small Medium Large Level Mean 
 
Structure 

Nonstructured 
X 

37.40 
(18.81) 

50.89 
(24.95) 

74.96 
(35.97) 

54.42 

 Structured 
D 

31.46 
(16.97) 

45.80 
(18.94) 

64.49 
(24.89) 

47.25 

 Level  Mean 34.43 48.35 69.73 50.83 

Table 9.15 The sample mean Time (seconds) and standard deviation (n=94) 

In Figure 9.4 the sample treatment means of the variable Time for structured 
(D) and nonstructured (X) function definitions are displayed as function of the 
Size. 

In case of this continuous dependent variable, we can use the F*-statistic 
with has the F-distribution under the null hypothesis. The decision rules are 
as follows: 
• Interaction effect AB (Size × Structure) with F* = MSAB / MSE.  
 If  F* ≤ F[1-α; (a-1)(b-1), (n-1)(ab-1)] we fail to reject the null hypothesis H01; 

otherwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha1. 

• Main effect factor A (Size) with F* = MSA / MSE.  
 If  F* ≤ F[1-α; (a-1), (n-1)(ab-1)] we fail to reject the null hypothesis H02; oth-

erwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha2. 
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• Main effect factor B (Structure) with F* = MSB / MSE.  
If  F* ≤ F[1-α; (b-1), (n-1)(ab-1)] we fail to reject the null hypothesis H03; oth-
erwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha3. 
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Figure 9.4  The means of Time (seconds) measured for X- and D-structured 
scripts as function of the Size 

The ANOVA table for the dependent variable Time is given in Table 9.16, to-
gether with the calculated F*-value, the F-value at significance level α, and 
also the p-value (the probability, when H0 is true, of observing a test result as 
deviant or more deviant than the result actually obtained). 
 
Source of Varia-
tion 

Sum of 
Squares 

df Mean 
Squares 

F* F 
α=0.05 

p 

Subjects 96382 93 1036.37    
Factor Size 118828.1 2 59414.05 117.6 3.00 .000 
Factor Structure 7249.09 1 7249.09 13.68 3.84 .000 
Size × Structure 
Interactions 

783.78 2 391.89 0.820 3.00 .443 

Error 232469.4 465 499.93    
Total 455712.3 563     

Table 9.16  ANOVA table for the variable Time 

From Table 9.16, with a level of significance α = 0.05, it can be concluded that: 
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• There is no significant interaction effect between Size and Structure on the 
variable Time, since F* ≤ F  (p = .443) (the curves of the treatment means in  
Figure 9.4 for the two levels of Structure are nearly parallel): i.e., we fail to 
reject the null hypothesis H01.  

• There is a significant main effect of Size on the variable Time, since F* > F  
(p = .000). This means that the null hypothesis H02 can be rejected. 

• There is a significant main effect of Structure on the variable Time, since F* 
> F  (p = .000). This means that the null hypothesis H03  can be rejected. 

 
The hypotheses H04,..,H012, involving the treatment means, can be tested as 
well. The family level of significance is chosen to be α = 0.10. There are 9 pair-
wise comparisons of treatment means, each of them can be analysed with a 
single degree of freedom test (Neter et al., 1990) with α’ = 0.10/9 = 0.011. The 
t* test statistic has been used, with t* = (mjk-mj'k') / √(2 × MSE / n), and degrees 
of freedom = (n-1)(ab-1). Under the null hypothesis, the statistic t* follows the 
t distribution. Here, t[0.011;465] = 2.33 . 
 

Null Hypothesis Estimated      t* t* ≥ t    p 
H0

4 : µSX - µSD = 0 mSX - mSD =  5.94  1.82 False .036 

H0
5 : µMX - µMD = 0 mMX - mMD =  5.09  1.56 False .070 

H0
6 : µLX - µLD = 0 mLX - mLD = 10.47  3.21 True .001 

H0
7 : µMX - µSX = 0 mMX - mSX = 13.49  4.14 True .000 

H0
8 : µLX - µMX = 0 mLX - mMX = 24.07  7.38 True .000 

H0
9 : µLX - µSX = 0 mLX - mSX = 37.56 11.52 True .000 

H0
10: µMD - µSD = 0 mMD - mSD = 14.34  4.40 True .000 

H0
11: µLD - µMD = 0 mLD - mMD = 18.69  5.73 True .000 

H0
12: µLD - µSD = 0 mLD - mSD = 33.03 10.13 True .000 

Table 9.17  Single degree of freedom tests for hypotheses on the variable Time 

From Table 9.17, it can be concluded that in tests 4 and 5 the null hypothesis 
cannot be rejected; in the other tests (6..12) the null hypothesis can be rejected 
and the corresponding alternative hypothesis will be accepted. In other words, 
in these cases there is a significant influence (with a family level of signifi-
cance α = 0.10) on the dependent variable Time. 

If there had been an interaction effect, the effect of Size on the Structure-
effect could have been tested with the following hypotheses: 
 H013:   (µSX - µSD) - (µMX - µMD) = 0 
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 H014:   (µMX - µMD) - (µLX - µLD) = 0 
 H015:   (µSX - µSD) - (µLX - µLD)  = 0 
These tests could replace the ratio-measure as defined by Scanlan (1989), as 
will be discussed in section 9.9. 

9.8.4 Correctness 

For each treatment, the sample mean of the variable Correctness (and the 
standard deviation) is given in Table 9.18, together with the factor level 
means. The sample mean gives the proportion correct answers; this can also be 
seen as the probability of a correct answer. 
 
Factor  Size  
 Levels Small Medium Large Level Mean 
 
Structure 

Nonstructured 
X 

0.660 
(0.48) 

0.600 
(0.49) 

0.670 
(0.47) 

0.643 
 

 Structured 
D 

0.710 
(0.45) 

0.860 
(0.35) 

0.940 
(0.25) 

0.836 

 Level  Mean 0.685 0.730 0.805 0.740 

Table 9.18  Proportion correct answers and sample standard deviation (n=94) 

In Figure 9.5 the proportion correct answers for structured (D) and non-
structured (X) function definitions are displayed as function of the Size. 
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Figure 9.5  The proportion Correct answers for X- and D-structured scripts as 
function of the Size 
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In case of this binary dependent variable, we will use the Q-statistic, defined 
by Cochran (Myers et al., 1991), with a χ2-distribution under the null hypothe-
sis; χ2[1-α, df] denotes the χ2-value at significance level α and df is the degrees 
of freedom. The decision rules are as follows: 
• Interaction effect AB (Size × Structure) with Q = SSAB / MSE. 
 If Q ≤ χ2[1-α; (a-1)(b-1)] we fail to reject the null hypothesis H01; otherwise 

the null hypothesis is rejected and we accept the alternative hypothesis Ha1. 
• Main effect factor A (Size) with Q = SSA / MSE. 
 If Q ≤ χ2[1-α; (a-1)] we fail to reject the null hypothesis H02; otherwise the 

null hypothesis is rejected and we accept the alternative hypotheses Ha2. 
• Main effect factor B (Structure) with Q = SSB / MSE.  

If  Q ≤ χ2[1-α; (b-1)] we fail to reject the null hypothesis H03; otherwise the 
null hypothesis is rejected and we accept the alternative hypothesis Ha3. 

 
The ANOVA table for the dependent variable Correctness is given in Table 
9.19, together with the calculated value for the Q-statistic, the χ2-value at sig-
nificance level α, and the p-value. 
 

Source of Varia-
tion 

Sum of 
Squares 

df Mean 
Squares 

Q χ2

α=0.05 
p 

Subjects 30.19 93 0.32    
Factor Size 1.32 2 0.66 7.90 5.99 .021 
Factor Structure 5.36 1 5.36 32.09 3.84 .000 
Size × Structure 
Interactions 

1.42 2 0.71 8.50 5.99 .016 

Error 70.39 465 0.15    
Total 108.68 563     

Table 9.19  ANOVA table for the variable Correctness 

From Table 9.19, with a level of significance α = 0.05, it can be concluded that: 
• There is a significant interaction effect between Size and Structure on the 

variable Correctness, since Q > χ2 (p =.021). This means that the null hy-
pothesis H01 can be rejected. 

• There is a significant main effect of Size on the variable Correctness, since Q 
> χ2 (p =.000). This means that the null hypothesis H02 can be rejected. 

• There is a significant main effect of Structure on the variable Correctness, 
since Q > χ2 (p =.016). This means that the null hypothesis H03 can be re-
jected. 
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Again, we will consider the hypotheses on the treatment means. The family 
level of significance is chosen to be α = 0.10. There are 9 pairwise comparisons 
of treatment means, each of them can be analysed with a single degree of free-
dom test with α’ = 0.011. For each comparison, we can use the McNemar-
statistic M with a χ2-distribution under the null hypothesis. M is estimated as 
follows (Kotz et al., 1989): M = (n01-n10)2/(n01+n10), where nxy is the number of 
observations having response x on the first treatment in the comparison, and 
response y on the second treatment (response 0 = incorrect; response 1 = cor-
rect). Furthermore, χ2[1-α; df] = χ2[0.989; 1] = 6.63. 

 
Null Hypothesis Estimated M M ≥ χ2 p 
H0

4 : µSX - µSD = 0 mSX - mSD = - 0.05  0.86 False .353 

H0
5 : µMX - µMD = 0 mMX - mMD = - 0.26 16.89 True .000 

H0
6 : µLX - µLD = 0 mLX - mLD = - 0.27 17.86 True .000 

H0
7 : µMX - µSX = 0 mMX - mSX = - 0.06  1.06 False .304 

H0
8 : µLX - µMX = 0 mLX - mMX =   0.07  1.32 False .250 

H0
9 : µLX - µSX = 0 mLX - mSX =   0.01  0.03 False .853 

H0
10: µMD - µSD = 0 mMD - mSD =   0.15  8.17 True .004 

H0
11: µLD - µMD = 0 mLD - mMD =   0.08  3.27 False .071 

H0
12: µLD - µSD = 0 mLD - mSD =   0.23 16.33 True .000 

Table 9.20  Single degree of freedom tests for hypotheses on the variable Cor-
rectness 

From Table 9.20, it can be concluded that in tests 4, 7, 8, 9 and 11 the null hy-
pothesis cannot be rejected. In the other tests 5, 6, 10 and 12 the null hypothe-
sis can be rejected: there is a significant influence (with a family level of sig-
nificance α = 0.10) on the dependent variable Correctness.  

9.9 Discussion 

In the following tables, the results from the previous sections have been sum-
marised. The existence of significant main effects and interaction effects, 
based on the overall analysis of variance (α = 0.05), are given in Table 9.21. 

For each of the dependent variables Time and Correctness, there is an over-
all significant influence of the factor Structure and Size. For the variable Time, 
no significant interaction effect has been found; for Correctness, a significant 
interaction effect has been shown.  
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Factor 

Variable 
Structure Size Structure ×  Size 

Time Yes Yes No 
Correctness Yes Yes Yes 

Table 9.21  Existence of significant factor effects and interaction effects 

The results of testing the hypotheses involving treatment means are given in 
Table 9.22: whether or not the null hypothesis has been rejected (family level 
of significance α = 0.10).  
 
H0 H04 H05 H06 H07 H08 H09 H010 H011 H012

 µSX- 

µSD 

µMX- 

µMD 

µLX- 

µLD 

µMX- 

µSX 
µLX- 

µMX 
µLX- 

µSX 
µMD- 

µSD 
µLD- 

µMD 
µLD- 

µSD 
Time No No Yes Yes Yes Yes Yes Yes Yes 
Correct No Yes Yes No No No Yes No Yes 

Table 9.22  Rejection of null hypotheses 4..12 on treatment means 

With these results, it can be seen that:  
• The overall significant effect of Structure on the variable Time appears to be 

mainly due to the effect of the scripts of size Large. 
• The overall significant effect of Structure on Correctness appears to be 

mainly due to the effect of the Medium and Large scripts. 
• The overall significant effect of Size on X-structured and D-structured 

scripts on the variable Time is confirmed on each comparison. 
• The overall significant effect of Size on the variable Correctness is mainly 

due to the effect of Size on D-structured scripts. For none of the comparisons 
on X-structured scripts, a significant influence of the factor Size has be 
shown. This also shows the interaction between the factors Size and Struc-
ture on the variable Correctness. 

The two dependent variables - Time and Correctness - have been taken as cri-
teria for the performance of programmers. We assumed that the performance 
on structured function definitions versus comparable nonstructured function 
definitions corresponds to the performance on D-structured paths versus the 
similar X-structured paths as tested in the hypotheses. Then, in summary, we 
conclude that, with respect to the structure and size of function definitions: 
1. subjects need significant less time to obtain an answer to structured func-

tion definitions than to nonstructured function definitions  
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2. subjects give significant more often correct answers to somewhat larger 
structured function definitions than to nonstructured function definitions of 
comparable size 

3. subjects need significant more time to obtain an answer to larger function 
definitions than to smaller ones 

4. subjects give significant more often correct answers for larger structured 
function definitions than for smaller ones 

Conclusions 1 and 2 give empirical evidence to support the general conclusion 
that programmers perform better on structured Miranda function definitions 
than on nonstructured definitions. 

Conclusion 3 seems to be quit obvious, but conclusion 4 came up as rather a 
surprise and seems to be counter-intuitive: an increase in the proportion cor-
rect answer for larger function definitions. However, a similar ‘unexpected’ 
trend has been observed in other studies: Basili & Perricone (1984) found that 
there is a higher error rate in smaller sized modules than in larger modules. 
One of the tentative explanations they offer is that larger modules are coded 
with more care than smaller modules because of their size. Also Möller & 
Paulish (1993) found significantly higher fault rates in small modules as com-
pared to larger ones. 

 
The experiment used in this study is similar to the one used by Scanlan (1989) 
in the comparison of flowcharts and pseudocode. However, the design and sta-
tistical analysis used in this study differ on some important aspects.  
• Scanlan used a single factor repeated measures design, as opposed to a two-

factor repeated measures design used here. In our study, the main effects 
and interaction effect have been established on basis of analysis the vari-
ance; the dependency of hypotheses on the treatment means has been ac-
counted for explicitly.  

• A ratio-measure is used by Scanlan in order to assess the interaction effect. 
In terms of the present study, the ratio is calculated by dividing the larger 
time (of the structured or nonstructured definition) by the smaller time  (of 
the structured or nonstructured definition) for each subject at each size 
level; those ratios in favour of structured definitions receive a positive sign; 
those ratios in favour of nonstructured definitions receive a negative sign. In 
our experiment, the ratio-measure resulted in a highly non-normal distribu-
tion, because of the discontinuity of the measure between -1 and +1. Fur-
thermore, in case of equal times, there is no appropriate decision rule to as-
sign the value -1 or +1. In this chapter, an alternative is proposed for the ra-
tio-measure (see section 9.8.3).  
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• The confidence measure used by Scanlan is on an ordinal scale: four levels 
from 1 to 4. The mean confidence level of such an ordinal measure, as used 
by Scanlan, is questionable. Moreover, it is not obvious that the subjects are 
reliable in the self-assessment of the correctness of their solution, in other 
words whether the confidence level depends on the correctness of their an-
swer. In some other studies it has been shown that this is not always the 
case. Gibson & Senn (1989) found a notable discrepancy between correct-
ness and confidence. Gathy and Denef (1993) found a strong correlation be-
tween the self-confidence assessment scores and the final examinations for 
good students, whereas a negative but loose correlation was observed for 
weak students. Leclercq (1993) analysed factors that affect the confidence 
estimation and the confidence expression.  

With respect to these points, Scanlan’s study should be reconsidered. 

9.10 Conclusion  

The aim of this study has been to investigate programmers' performance on 
structured versus nonstructured function definitions. In the experiment, based 
on a two-factor repeated measures design, the control-flow model of Miranda 
function definitions and related metrics proved to be useful in the definition 
the factors and factor levels of Structure and Size.  

The experimental findings support the main hypothesis that programmers 
perform better on structured Miranda function definitions than on non-
structured definitions. Some counter-intuitive findings, reported in the litera-
ture before, came up in the present study as well: programmers make fewer 
errors in larger function definitions than in smaller ones. 

Based on these experimental findings, the programming style rule can be 
put forward to use structured function definitions instead of nonstructured 
ones. This would mean that a programming style is adopted to write guards 
that always are concluded with an ‘otherwise’-case. 
 
   
  f (x:xs) = 1, if x > 2 
           = 2, otherwise 
  f [x]    = 3 

   
  g (x:xs) = 1, if x > 2 
           = 2, if x ≤ 2 
  g [x]    = 3 
 

Table 9.23  Example of a structured function definition f and a semantically 
equivalent nonstructured definition g 

The rule could be relaxed by demanding total guards, such that always, once a 
pattern succeeds, one of the guards in the clause will succeed. In that situa-



Structured versus Nonstructured Function Defintions 165 

tion, if no ‘otherwise’-case is used to obtain total guards, a nonstructured func-
tion definition would be obtained in the control-flow model, because in the 
model is abstracted from the actual content of the guards. An example is given 
in Table 9.23. Both definitions have total guards. In the control-flow model, the 
function definition of f is structured, whereas the semantically equivalent 
definition of g is nonstructured. 

To check the application of this programming rule, a Miranda static ana-
lyser (van den Berg & van den Broek, 1995a) based on the control-flow model 
of function definitions can be used. With this analyser, X-structured function 
definitions in scripts can be spotted easily, also in scripts with many defini-
tions. After this anomaly checking, these definitions can be inspected on errors 
and/or be rewritten to a structured version. 

In a survey of scripts written by experts, hardly any nonstructured function 
definition has been found. Apparently, experts already do not use this kind of 
function definitions. For some programmers with a few years of functional 
programming experience, nonstructured function definitions have been de-
tected in their scripts. Programming style rules, as proposed above, could 
make programmers aware of the operational semantics of function definitions. 
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Conclusion 
 
 
 
 
In the general introduction of the thesis, the following problems have been put 
forward: 
• How can aspects of software quality in different programming paradigms 

be assessed using software metrics. 
• How can software in a functional programming language be modelled to 

capture structural properties of this software. 
• How can software models and metrics be validated in experiments based on 

measurement theory. 
As the end result of the thesis, one would expect a conclusion such as: 

The results of the experiments show that the programs in a functional lan-
guage took significantly less time to develop and were considerably more con-
cise and easier to understand than the corresponding programs written in an 
imperative language. 

However, it is hard to reach such a general conclusion on objective grounds. In 
this thesis, based on the experiment described in Chapter 2, a tentative con-
clusion is put forward, that students in the experimental group who learned 
functional programming (FP) made ‘better’ programs than students in the con-
trol group who learned imperative programming (IP). This type of conclusion 
raised the question of its validity (as discussed in part C of this thesis). 

The conclusion in Chapter 2 has been based on one particular type of as-
signments: the design and implementation of a program. An important crite-
rion used in the experiment is the coverage of the design by its implementa-
tion. It appeared that students in the FP-group showed a higher coverage than 
students in the IP-group. This could be rephrased as follows: FP-students used 
more abstractions in their programs than IP-students. The type of abstractions 
are functional (or procedural) abstractions. Hence, the conclusion is as follows: 
FP-students used more functions in their programs than IP-students. How-
ever, this is hardly surprising, since the FP-students used a functional pro-
gramming language in which functions are more prominent than in imperative 
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languages. This confounding effect may obscure the actual differences between 
the two programming groups.  

In Chapter 3, another problem arose: experts were requested to rank stu-
dents programs on some given criteria. Apparently, for functional programs 
there was less consensus than for imperative programs, because of the novelty 
of the functional programming style in teaching. This points to another major 
problem in this type of research: the importance of differences between pro-
grammers: 

The variability due to subject differences often outweighs variability due to 
independent variables. (Moher & Schneider, 1982) 

This problem can be tackled only by careful experimentation. This thesis has 
been aimed specifically at the issue of experimentation: in the second part, the 
modelling of software for structure metrics has been described; and in part C, 
the validation of these metrics has been investigated in some experiments. 
 
One important lesson learned in the previous years in software measurement 
is that ‘no single technology or method can be expected to work well in all con-
texts, and observing software phenomena out of context seems to be doomed to 
fail.’ (Basili et al., 1993).  

Therefore, there will no general answer to the question in Chapter 1: ‘is 
functional programming the best initial programming language’, but the ques-
tion should be: ‘is functional programming the best initial programming lan-
guage, for a given group of students, with a certain educational background, 
with a certain motivation, within a certain curriculum, and so on.’ This situa-
tion can be made more concrete: the population of first-year students in the 
department has changed over the last few years: now, not only the ‘pure’ Com-
puter Science students take the functional programming course, but also stu-
dents in Business Information Technology. These students differ in several as-
pects from the original group. Moreover, in several courses in the curriculum, 
there is a tendency to emphasise an object orientation to programming and de-
sign. Again, this may have an impact on the answer to the question regarding 
the best initial programming language. 

This leads to another conclusion: ‘We need to characterise and understand 
the project context and understand the various phenomena relative to that 
context ... . We need to replicate experiments in different contexts to fully un-
derstand the nature of the various phenomena ... . ‘ (Basili et al., 1993).  

The context for the research in this thesis can be characterised by pro-
gramming-in-the-small, which has been investigated in controlled experiments 
with novice programmers. 
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Although there are no general conclusions such as stated in the previous sec-
tion, there are other achievements of the research presented in this thesis.  

 
It has been shown (Chapters 4 and 5) that some models, e.g. flowgraphs and 
callgraphs, can be used to model software in different programming para-
digms. These models, which are mainly used for imperative programming, 
have been adapted for programs in the functional programming language Mi-
randa. The proposed control-flow model captures the operational semantics of 
function definitions. The callgraph model has been adapted to specific proper-
ties of functional programs. The models used for both programming paradigms 
allow comparison of software in different languages based on these abstrac-
tions and related metrics.  However, the validation of these comparisons is a 
major problem to be solved, as has been shown for the McCabe and Halstead 
metrics in some exploratory experiments with respect to the comprehensibility 
(Chapters 3 and 2).  

The objectivity of the assessment of software attributes has been enhanced 
by the use of static analysis tools, by which the measurement is automated. 
For this purpose, the metrics based on these models have been formalised in 
this research by means of attributed grammars (Chapters 3 and 5). Somewhat 
larger software has also been analysed with the metrics tools. These analysers 
are a helpful supplement to other approaches of static analysis. 

 
The validation of structure metrics has been addressed in a study of Miranda 
type expressions (Chapter 6). Structure metrics have been defined on the base 
of parse trees of type expressions. A framework for validation emerged in this 
case study. In order to substantiate the validation of software metrics, the role 
of measurement theory has been investigated (Chapter 7). Representation axi-
oms have been used in establishing the empirical and theoretical order of type 
expressions. For some subsets of type expressions in the experiment, there is a 
good correspondence between the empirical order and the hypothesised theo-
retical order. Different types of validities in the software metric development 
process have been clarified by combining a validation network scheme and the 
representational measurement theory (Chapter 8). 

In an extended experiment, the control-flow model for Miranda function 
definitions has been utilised to establish the influence of the structure of defi-
nitions on their comprehensibility (Chapter 9). The experimental design and 
the statistical analysis have been described in detail. Structured function defi-
nitions appear to be easier to understand by novice programmers than non-
structured ones. A programming style rule on the use of guards in Miranda 
function definitions has been validated by these findings. 
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Further research 

The research presented in this thesis could be extended in many directions. 
Few of them will be brought to the fore: firstly, in the field of experimental 
software engineering, and secondly, those with some implications for the com-
puter science curriculum. 
  
There is a need for metrics of products in the early phases of software devel-
opment, e.g. specification and design, and for a relation between these metrics 
and the characteristics of the final software products. Functional programs are 
being used as executable specifications. The models and tools described in this 
thesis could be investigated in this context. 

A database ought to be set up of metrics of functional programs, with data 
on development effort, error rates, and such-like, to highlight characteristics of 
functional programs in different development environments. 

The actual application of metric tools in software development using func-
tional programming, particularly with respect to testing and maintenance, 
should be investigated in order to tailor the metrics and the tools to an optimal 
use in specific environments. 

Controlled experiments, as described in this thesis, should be extended to 
validate other rules in functional programming, and the role of measurement 
theory in these experiments should be strengthened. 
 
In computer science education, the use of software metrics for the objective as-
sessment of programming assignments could be pursued (cf. Ceilidh: Benford 
et al., 1994). Probably as important is that students in computer science get 
acquainted with software measurement to support the development and man-
agement of software. This could be achieved by the use of metric tools in pro-
gramming courses and programming projects. Furthermore, the curriculum 
could be extended with courses specifically directed to software measurement 
and experimentation: 

Measurement and experimentation are standard ingredients in traditional 
science and engineering curricula. ... Recurring use of this paradigm within 
the [computer science] curriculum is important to facilitate its being learned 
properly. (Zweben, 1993) 

Some extended packages for software measurement education have been de-
veloped (e.g. Metkit: Ashley, 1994). 
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The thesis will be concluded with a quotation of Rombach, stated in the pre- 
face to a Workshop on Experimental Software Engineering: 

We have only begun to understand the experimental nature of software engi-
neering, the role of empirical studies and measurement within software en-
gineering, and the mechanisms needed to apply them successfully. (Rombach 
et al., 1993) 

The research in this thesis will have achieved its goal when it has made a con-
tribution to this understanding. 
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Summary 
 
  

 
 
In general, a producer is interested in the quality of his product, whether it is 
a software package or, for example, a car. There are quality aspects which are 
important to the user of the product, such as for a car the fuel consumption 
rate. Other quality aspects are relevant to the technicians who have to build 
the product or to maintain it: e.g. the ease of assembling certain parts. Fur-
thermore, the producer will be interested in the cost and duration of the pro-
duction, and the resources needed. Such quality aspects have to be measured 
to allow a comparison with other products and production processes: a particu-
lar fuel consumption rate will be acceptable in certain circumstances. 

A similar situation is encountered in the case of software. There are user 
aspects of quality, for example with respect to the interface and performance, 
and other aspects related to the programmers who have to design and imple-
ment the computer programs. The discipline of software engineering offers 
methods for the design and production of software. The field of software meas-
urement provides approaches to the quantification of quality aspects of soft-
ware, related to the product, the process and the resources. An obvious soft-
ware metric is the size of the program, usually expressed in the number of 
lines of executable code. But there are many other software metrics, and it is 
necessary to be able to decide when to use which metric and how. With these 
metrics, one would like to be able to make an objective assessment of the rela-
tive merits of software products and software development methods. 

This thesis addresses some issues on the quality of software with respect to 
the programmers: the comprehensibility of the program code. A lot of time is 
spent reading and understanding programs in order to remove faults or to 
adapt the program to changed requirements. Many factors in the program code 
affect the comprehensibility of the program, such as the language used, the 
naming of variables, the structure, the indentation, explanatory documenta-
tion, the experience of the programmer, and so on.  

In order to capture a particular quality aspect of programs, usually a model 
is built. In such models, certain details in the program are abstracted. The 
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models are used in the definition of software metrics. The models and metrics 
have to be validated, for example their consistency has to be established. Fur-
thermore, the metric values can be obtained with the use of tools: i.e. another 
computer program is used to analyse the original programs. The tools assure a 
fixed procedure and thus an objective assessment of the quality aspects. 

This thesis focuses on the structure of the code, how it is divided into parts 
- usually called modules - and how the modules are related to each other. This 
aspect of structure is modelled in a callgraph of the program. Another aspect 
studied in this thesis is the control structure: the order in which parts of the 
program will be executed, as prescribed by special language constructs. For 
this aspect, a control-flow graph of the program is used. The metrics are indi-
cators of the complexity of the structure. These models and metrics are de-
scribed in Chapters 4 and 5. A tool for the automated measurement of metrics 
based on these models is described in Chapter 5. 

Two classes of programming languages are considered: the ‘classical’ im-
perative ones, with languages such as Pascal and Modula-2, and the less com-
mon class of functional languages, where Miranda is used as the example. The 
latter is a very powerful mathematics-like language. These languages are used 
in the initial programming courses in Computer Science at the University of 
Twente as described in Chapter 2. One would like to know whether students 
who learn to program in Miranda write better programs than the students who 
learn for example Modula-2; and also: are these Miranda programs easier to 
comprehend than Modula programs? For this comparison, some experiments 
with certain well-known software metrics are described in Chapters 2 and 3. 
Some models, the callgraph and the control-flow graph, that are used for im-
perative languages, are modified for the functional language Miranda as de-
scribed in Chapter 5. 

Once one has obtained metric values, it has to established how they can be 
used. Do they yield the expected ordering of programs, e.g. with respect to 
their comprehensibility? Are there threshold values beyond which the pro-
grams are difficult to understand, or are very error prone? These questions are 
part of the external validation. The validation has been carried out in some 
formal experiments using small programs with first-year students, thus novice 
programmers. They are described in Chapters 6 and 9. The use of measure-
ment theory in the validation is explored in Chapter 7. It is an open question 
whether the results of experiments involving novice programmers and small 
programs can be generalised to expert programmers in the industry working 
on large programs in teams. Several of these validation issues are raised in 
Chapter 8 of this thesis. 
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