

Sof t w ar e M easur ement
and

Funct i onal Pr ogr ammi ng

K laas van den Ber g

PhD Thes is
J une 23, 1995

Un i ver si t y of Tw en t e

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Berg, Klaas Gerrit van den

Software Measurement and Functional Programming
Thesis University of Twente Enschede
ISBN 90-9008251-4
Subject headings: software measurement / functional programming

This thesis has been approved by
Prof. dr. ir. A.J.W. Duijvestijn, University of Twente
Prof. dr. N.E. Fenton, City University, London
Dr. P.M. van den Broek, University of Twente

 i

Abstract

Software metrics have been investigated for the assessment of programs writ-
ten in a functional programming language. The external attribute of programs
considered in this thesis is their comprehensibility to novice programmers.
This attribute has been operationalized in a number of experiments. The in-
ternal attribute of software which is examined is the structure. Two models for
the structure of software have been employed: callgraphs and flowgraphs. The
proposed control-flow model captures the operational semantics of function
definitions. The objective measurement of the attributes has been supported
by tools. The validation of structure metrics has been addressed in certain ex-
periments for programming-in-the-small. The structure of type expressions in
functional programs has been analysed in a case study. A simple framework
for software metrication proved to be useful. The validation of metrics has
been linked with axioms from the representational measurement theory. The
control-flow model for functional programs showed its value in the set-up of an
experiment regarding the influence of the structure on the comprehensibility.
A programming style rule on the use of guards in function definitions has been
validated by the findings in this experiment.

ii Contents

Contents iii

Contents

Summary 1

1. General Introduction 3

PART A : THE CONTEXT 11

2. Teaching Functional Programming to First-Year Students 13
2.1 Introduction 13

2.1.1 Motivation 14
2.1.2 The students 14

2.2 The computer programming course 15
2.2.1 Functional Programming 16
2.2.2 Imperative Programming 17
2.2.3 Programming techniques 18
2.2.4 Instructional material 19

2.3 Evaluations 20
2.3.1 Observations 20
2.3.2 Problems 21
2.3.3 Functional versus imperative programming 24

2.4 Programming project 27
2.4.1 Organisation 27
2.4.2 Railway information system 27
2.4.3 Experience 29
2.4.4 Role of functional programming 30

2.5 Conclusion 31

3. Syntactic Complexity Metrics and the Readability of Functional
 Programs 33

3.1 Introduction 33
3.2 Software Metrics 35

iv Contents

3.2.1 Halstead and McCabe Metrics 35
3.2.2 Metrics for Pascal and Miranda 36
3.2.3 Automated measurement 38

3.3 Case Study 38
3.4 Discussion 40

PART B : MODELLING 43

4. Modelling Software for Structure Metrics 45
4.1 Introduction 45
4.2 Flowgraphs 49
4.3 Structure graphs 50
4.4 Structure metrics 54
4.5 Two small languages 55
4.6 Conclusion 59

5. Static Analysis of Functional Programs 61
5.1 Introduction 61
5.2 Functional programs 63

5.2.1 Example program 63
5.2.2 Structure of function definitions 65

5.3 Control-flow model 66
5.3.1 Control-flow in function definitions 66
5.3.2 Modelling control-flow in function definitions 67
5.3.3 Control-flow graph and decomposition tree 68
5.3.4 Flowgraph metrics 70

5.4 Dependency model 72
5.4.1 General callgraph 74
5.4.2 Global callgraph 74
5.4.3 Local callgraph 76
5.4.4 Include callgraph 77
5.4.5 Callgraph metrics 77

5.5 Miranda analyser 81
5.5.1 Prometrix 81
5.5.2 Miranda front end 82
5.5.3 Metric statistics 83

5.6 Design of functional programs 84
5.6.1 Pseudocode 84
5.6.2 Design callgraph 84

5.7 Conclusion 86

Contents v

PART C : VALIDATION 89

6. Validation of Structure Metrics: A Case Study 92
6.1 Introduction 92
6.2 A framework for validation 94
6.3 Structure metrics of type expressions 96

6.3.1 Type expressions 96
6.3.2 A grammar for type expressions 98
6.3.3 Alternative grammars 98
6.3.4 The internal axioms 99
6.3.5 The external axioms 100
6.3.6 The metric function 102

6.4 Validation 102
6.4.1 Method 103
6.4.2 Procedure 104
6.4.3 Results 104

6.5 Discussion 106
6.6 Conclusion 106

7. Axiomatic Testing of Structure Metrics 109
7.1 Introduction 109
7.2 The case study 111
7.3 The theoretical order 112

7.3.1 The abstraction 113
7.3.2 The containment relation 114
7.3.3 Extension of the containment relation and ordinal scale 115

7.4 The empirical order 116
7.4.1 Global analysis of the empirical order 117
7.4.2 Axiomatic analysis of the empirical order 118

7.5 Discussion 123

8. Validation in the Software Metric Development Process 125
8.1 Introduction 125

8.1.1 The representational measurement theory 127
8.1.2 The validity network scheme 127
8.1.3 The case study 128
8.1.4 Overview 128

8.2 The generative phase 129
8.2.1 The substantive domain 129
8.2.2 The conceptual domain 130
8.2.3 The methodological domain 132

vi Contents

8.2.4 Validities in the generative phase 132
8.3 The executive phase 134

8.3.1 Calibration 134
8.3.2 Prediction 134
8.3.3 Discussion 135
8.3.4 Validities in the executive phase 135

8.4 The interpretative phase 136
8.4.1 Validities in the interpretative phase 136

8.5 Relation with other validation approaches 137

9. Programmers' Performance on Structured versus Nonstructured
 Function Definitions 139

9.1 Introduction 139
9.2 Function definitions 140
9.3 Control-flow model 143
9.4 Experiment 147

9.4.1 Independent variables 147
9.4.2 Dependent variables 148
9.4.3 Experimental design 148
9.4.4 Statistical model 149
9.4.5 Hypotheses 150

9.5 Subjects 152
9.6 Objects 152
9.7 Procedure 154
9.8 Results 154

9.8.1 Outliers 154
9.8.2 Analysis of variance 155
9.8.3 Time 156
9.8.4 Correctness 159

9.9 Discussion 161
9.10 Conclusion 164

10. Conclusion 167

Samenvatting 173

References 175

Index 185

Curriculum Vitae 189

 1

Summary

In general, a producer is interested in the quality of his product, whether it is
a software package or, for example, a car. There are quality aspects which are
important to the user of the product, such as for a car the fuel consumption
rate. Other quality aspects are relevant to the technicians who have to build
the product or to maintain it: e.g. the ease of assembling certain parts. Fur-
thermore, the producer will be interested in the cost and duration of the pro-
duction, and the resources needed. Such quality aspects have to be measured
to allow a comparison with other products and production processes: a particu-
lar fuel consumption rate will be acceptable in certain circumstances.

A similar situation is encountered in the case of software. There are user
aspects of quality, for example with respect to the interface and performance,
and other aspects related to the programmers who have to design and imple-
ment the computer programs. The discipline of software engineering offers
methods for the design and production of software. The field of software meas-
urement provides approaches to the quantification of quality aspects of soft-
ware, related to the product, the process and the resources. An obvious soft-
ware metric is the size of the program, usually expressed in the number of
lines of executable code. But there are many other software metrics, and it is
necessary to be able to decide when to use which metric and how. With these
metrics, one would like to be able to make an objective assessment of the rela-
tive merits of software products and software development methods.

This thesis addresses some issues on the quality of software with respect to
the programmers: the comprehensibility of the program code. A lot of time is
spent reading and understanding programs in order to remove faults or to
adapt the program to changed requirements. Many factors in the program code
affect the comprehensibility of the program, such as the language used, the
naming of variables, the structure, the indentation, explanatory documenta-
tion, the experience of the programmer, and so on.

In order to capture a particular quality aspect of programs, usually a model
is built. In such models, certain details in the program are abstracted. The
models are used in the definition of software metrics. The models and metrics

2 Summary

have to be validated, for example their consistency has to be established. Fur-
thermore, the metric values can be obtained with the use of tools: i.e. another
computer program is used to analyse the original programs. The tools assure a
fixed procedure and thus an objective assessment of the quality aspects.

This thesis focuses on the structure of the code, how it is divided into parts
- usually called modules - and how the modules are related to each other. This
aspect of structure is modelled in a callgraph of the program. Another aspect
studied in this thesis is the control structure: the order in which parts of the
program will be executed, as prescribed by special language constructs. For
this aspect, a control-flow graph of the program is used. The metrics are indi-
cators of the complexity of the structure. These models and metrics are de-
scribed in Chapters 4 and 5. A tool for the automated measurement of metrics
based on these models is described in Chapter 5.

Two classes of programming languages are considered: the ‘classical’ im-
perative ones, with languages such as Pascal and Modula-2, and the less com-
mon class of functional languages, where Miranda is used as the example. The
latter is a very powerful mathematics-like language. These languages are used
in the initial programming courses in Computer Science at the University of
Twente as described in Chapter 2. One would like to know whether students
who learn to program in Miranda write better programs than the students who
learn for example Modula-2; and also: are these Miranda programs easier to
comprehend than Modula programs? For this comparison, some experiments
with certain well-known software metrics are described in Chapters 2 and 3.
Some models, the callgraph and the control-flow graph, that are used for im-
perative languages, are modified for the functional language Miranda as de-
scribed in Chapter 5.

Once one has obtained metric values, it has to established how they can be
used. Do they yield the expected ordering of programs, e.g. with respect to
their comprehensibility? Are there threshold values beyond which the pro-
grams are difficult to understand, or are very error prone? These questions are
part of the external validation. The validation has been carried out in some
formal experiments using small programs with first-year students, thus novice
programmers. They are described in Chapters 6 and 9. The use of measure-
ment theory in the validation is explored in Chapter 7. It is an open question
whether the results of experiments involving novice programmers and small
programs can be generalised to expert programmers in the industry working
on large programs in teams. Several of these validation issues are raised in
Chapter 8 of this thesis.

 3

Chapter 1

1. General Introduction

How good is functional programming? This simple question raises many other
questions, for example:
• What is functional programming: how different is it from the ‘classical’ im-

perative programming style?
• Is functional programming good for the development of software: can these

programs be developed in a shorter time; are functional programs more reli-
able; are such programs easier to maintain? Another question is whether
the functional programming style is good in teaching programming: is it
easy to learn; do students write better programs?

• How can the quality of functional programs be assessed: what are the crite-
ria for reliability and maintainability; how can such attributes be quanti-
fied; can this assessment be done objectively?

These questions indicate the two themes of this thesis: functional program-
ming and software measurement. First, a short characterisation is given of
functional programming, and then of software measurement, i.e. that field in
software engineering which is directed at the objective quantification of soft-
ware attributes. Subsequently, an overview will be given of the topics ad-
dressed in the thesis and the relation between the chapters.

Functional programming

Two important programming styles are imperative programming and func-
tional programming. Imperative programming - in languages such as Pascal,
Modula-2 and Ada - is characterised by the use of variables, commands and
procedures. A variable refers to a named storage location whose value (con-
tents) can be modified by means of assignment statements. The value of a
variable is determined by its computational history.

By contrast, functional programming is characterised by the use of expres-
sions and functions. Expressions are used solely to denote a value. The value of

4 Chapter 1

an expression can be derived from the value of its components. There is a sub-
stitutive equality between expressions with the same value. Because of these
properties functional languages are called referentially transparent: they facili-
tate formal reasoning about functional programs. Expressions may contain
certain ‘names’ which stand for unknown quantities: different occurrences of
the same name in the same context refer to the same unknown quantity. Such
names are usually called ‘variables’, but these variables do not vary, as in
mathematics (Bird & Wadler, 1988)1. Functional programs contain no side-
effects of any kind. A function call can have no effect other than to compute its
result. This makes the order of execution irrelevant - since no side-effects can
change the value of an expression. It relieves the programmer of the burden of
prescribing the flow of control.

A representative functional programming language is Miranda2 (Turner,
1986). Some important characteristics of this language are the following:
• It allows higher-order functions: functions can be passed as parameter and

returned as function result.
• It employs lazy evaluation: it is a parameter mechanism whereby an argu-

ment is evaluated only if its value is actually required, rather than when
the function is invoked.

• It uses a polymorphic strong typing system: the type of each expression is
checked at compile time, with type variables standing for unknown types.

• It supports the use of patterns in the definition of functions.
An example of a program in Miranda is explained in Chapter 5 (section 2) of
this thesis; type expressions are described in Chapters 6 (section 3) and 7 (sec-
tion 2); and patterns in function definitions are described in Chapter 9 (section
2).

Functional programming has its roots in mathematical logic. One of these
roots is the lambda calculus developed by Church in the 1930s. Furthermore,
in defining functions, recursive equations are used, as formalised by Kleene in
the same period. McCarthy (1960) proposed a mathematical basis for computa-
tion, which was influenced by the lambda calculus and recursive function the-
ory. This culminated in the LISP programming language, which in its pure
form is the first functional programming language. Interest in functional lan-
guages increased due to the Turing Lecture by Backus (1978). A major devel-
opment was the implementation of Miranda by Turner (1979). Other modern
functional programming languages are ML, Clean, and Haskell. There are

1 The references are given at the end of the thesis
2 Miranda is a trademark of Research Software Ltd.

General Introduction 5

several sources providing an account of the history of functional programming
(e.g. Hudak, 1989; Hughes, 1989; Michaelson, 1989) and programming para-
digms (e.g. Watt, 1990).

Many claims have been made on the potential of functional programming.
Functional programming is expected to deliver an important contribution to-
wards the improvement of software development in its role of executable speci-
fications and prototyping.

Software measurement

Software measurement is a field in software engineering. Three approaches
have been identified in the field of software engineering research (Basili et al.,
1991): the formal methods approach, the system building approach, and the
empirical studies approach. In the first approach, software development is
viewed as a mathematical transformation process. In the system building ap-
proach, the emphasis is on finding better methods for structuring large sys-
tems. In the third approach, experimental software engineering, the emphasis
is on understanding the strengths and weaknesses of methods and tools in or-
der to tailor them to specific goals of a particular software project. A corner-
stone in this approach is measurement.

A rather formal definition is as follows: software measurement is the objec-
tive quantification of attributes of software entities: processes, products and
resources (Fenton, 1991). Software measurement is needed to gain control over
excessive cost of software, low productivity, and poor quality. The original mo-
tivations in the early 1970s for deriving software measures were almost en-
tirely managerial, resulting in numerous models for the estimation of software
cost and development effort. This also resulted in measures and models for as-
sessing the productivity of personnel during different software processes in dif-
ferent environments. These models had to consider the quality of the software
produced, resulting in so-called quality models.

Like measurement in any other discipline, software measurement has to be
based on measurement theory (Fenton, 1994). Formally, a measure is an objec-
tive assignment of a number (or symbol) to an entity to characterise a specific
attribute. Measurement is the process of this mapping to numbers. In mathe-
matics, a metric is a function defined on a pair of entities x and y such that
with respect to a specific attribute, m(x,y) measures the ‘distance’ between x
and y. Unfortunately, there are no generally agreed definitions of metric and
measure. In the thesis, the term software measure is used interchangeably
with the term software metric.

6 Chapter 1

The interest in the expenditure of human resources on the development and
operation of software systems has manifested itself in attempts to quantify
software complexity. Complexity is perceived as the ‘root of all evil’ and if only
it could be reduced this would bring about attendant reductions in all manner
of software evils: excessive development and testing effort, unreliability, and
unmaintainability. However, no researchers have yet been able to give an ade-
quate definition of the term complexity (Shepperd & Ince, 1993). Some com-
plexity metrics are considered in this thesis: McCabe's complexity metric in
Chapter 3, and other flowgraph-based complexity metrics in Chapters 4 and 5.
Software complexity is believed to be reduced by using development methods
which provide structure to the process and the products. It is an ‘axiom’ of
software engineering that a good internal structure yields a good external
software quality (Fenton, 1991).

Many software metrics are described in the literature. Not only do these
metrics aim to measure a wide range of attributes but also there are often
many irreconcilable metrics all claiming to measure the same attribute such as
cost, size or complexity. The reason for this state of affairs is commonly attrib-
uted to a general lack of validation of software metrics, i.e. ensuring that the
metric is a proper numerical characterisation of the claimed attribute.

Overview

The research in this thesis can be seen as part of experimental software engi-
neering. The approach to software measurement, based on representational
measurement theory, is strongly influenced by the work of Fenton et al. (1994),
especially in the second and third parts of this thesis. Moreover, there is an
emphasis on software product metrics and their validation.

Programming in functional languages is considered, as it has been a theme
of research at the University of Twente (Berne, Duijvestijn & van der Hoeven,
1985; Joosten, 1989). The research in this thesis originated in an educational
setting: an answer was required to the question as to which programming
paradigm, imperative programming or functional programming, is the best
suited for an initial programming course of first-year Computer Science stu-
dents. The case studies and experiments have been carried out in this context.
The following problems are addressed:
• How can aspects of software quality in the two programming paradigms be

assessed and compared using software metrics ?
• How can software in a functional programming language be modelled to

capture structural properties of this software ?
• How can software models and metrics be validated in experiments based on

measurement theory ?

General Introduction 7

An overview of the thesis is given in Figure 1.1. There are three parts.
• In part A, the educational context of the research on software metrics for

functional programming is given.
• In part B, the modelling of imperative and functional programs, as used for

structure metrics, is explored.
• In part C, the validation of software metrics is investigated in some case

studies.
In Chapter 10 some general conclusions of this thesis are presented.

 2

 3

 4

 5

 6

 9 7

Part A

Context

Part B

Modelling

Part C

Validation

Teaching Func-
 tional Programming

Syntactic
Complexity Metrics

Modelling for
Structure Metrics

Static Analysis of
Functional Programs

Validation of
Structure Metrics

Structured Definitions
Validation in Metric
Development Process

Axiomatic Testing
of Structure Metrics

 8

 13

Nonstructured vs

Introduction

Conclusion

Introduction

Introduction

Part A

Part B

Part C

10

Figure 1.1 Overview

8 Chapter 1

The main issues in the chapters in part A - the context - are the following:

• In Chapter 2, Teaching Functional Programming to First-Year Students, the
first experiments with some ad hoc software metrics based on callgraphs are
described. The metrics have been used for comparing students’ performance
in writing functional programs versus imperative programs. An outline is
given of the educational context of the experiments (Joosten, van den Berg
& van der Hoeven, 1993).

• In Chapter 3, Syntactic Complexity Metrics and the Readability of Func-
tional Programs, the ‘classical’ software metrics of McCabe and Halstead
are used in comparing students’ programs in an imperative and functional
language. A tool for the measurement of these metrics has been based on at-
tributed grammars (van den Berg, 1992).

There are two chapters in part B on modelling of software:

• In Chapter 4, Modelling Software for Structure Metrics, an alternative to

the software metrics used in Chapter 3 is explored: structure metrics based
on control-flow graphs for imperative programs. The notion of structure
graphs is introduced as an extension to the theory (van den Broek & van
den Berg, 1993).

• In Chapter 5, Static Analysis of Functional Programs, two graph models are
employed for defining metrics for functional programs: callgraphs and con-
trol-flow graphs. A metric analyser based on attribute grammars, as in
Chapter 3, has been developed (van den Berg & van den Broek, 1995a).

The issues related with validation of software metrics in part C are:

• In Chapter 6, Validation of Structure Metrics: A Case Study, type expres-

sions in the functional programming language Miranda are modelled and
structure metrics are defined. Hypotheses based on internal and external
axioms have been tested in experiments (van den Berg, van den Broek &
van Petersen, 1993).

• In Chapter 7, Axiomatic Testing of Structure Metrics, the testing of axioms
has been based on the representational measurement theory (van den Berg
& van den Broek, 1994). Deterministic and probabilistic testing of the em-
pirical order has been compared with a theoretical partial ordering of type
expressions from Chapter 6.

• In Chapter 8, Validation in the Software Metric Development Process, an
outline is given of different types of validities in the development process of

General Introduction 9

software metrics (van den Berg & van den Broek, 1995c). A validation net-
work scheme is combined with the representational measurement approach
from Chapter 7.

• In Chapter 9, Programmers’ Performance on Structured versus Nonstruc-
tured Function Definitions, the control-flow model for functional programs
from Chapter 5 is used in an experimental comparison of the comprehensi-
bility of structured and nonstructured Miranda function definitions (van
den Berg & van den Broek, 1995b).

This thesis consists of a number of published papers. It reflects research over a
period of about six years (1989-1995) in the field of software measurement,
with an emphasis on software written in functional programming languages.
These papers are included in this thesis only with some minor modifications.
However, Chapter 8 is a condensed version of the original published text, in
order to avoid an overlap with Chapter 7.

10 Chapter 1

 11

Part A : The Context

Issues

The initial motivation of the research in this thesis was the search for an ob-
jective justification of the decision to introduce functional programming into
the first year of the Computer Science curriculum at the University of Twente.
The question to be answered was: ‘Do students produce better programs when
they learn functional programming instead of imperative programming?’ This
question raised two issues: ‘Which criteria can be used to assess objectively the
quality of programs’, and ‘How to compare quality aspects of programs written
in different programming paradigms’.

The following quotation characterises the situation seen nowadays in many
discussions about software engineering methods and programming paradigms,
and also with respect to Computer Science curricula:

Much of what we believe about which approaches are the best is based on an-
ecdotes, gut feelings, expert opinions, and flawed research, not on careful,
rigorous software-engineering experimentation. (Fenton, 1994)

At the earliest stage of the research for this thesis, some ad hoc criteria for the
assessment of students programs were defined and used in the experiments.
The educational setting and the first experiments are described in Chapter 2.

In the subsequent stage, the applicability of software metrics - defined in the
literature - was investigated. Two of the most popular, the Halstead metrics
(Halstead, 1977) and McCabe’s cyclomatic complexity metric (McCabe, 1976),
were used in experiments described in Chapter 3. A problem encountered was
that these metrics have been defined mainly for imperative languages: there-
fore, a first task was the definition of the metrics for functional programs.
Moreover, a tool based on attributed grammars was developed for the auto-
mated measurement of the metrics.

12 Part A: The Context

Program Comprehension

Before developing and using metrics, one must have a clear idea about the
purpose of the metric. A Goal-Question-Metric method (Basili & Rombach,
1988) gives a framework for this issue. The goal and some questions have been
expressed above. In the research in this thesis, one major issue has been the
objective assessment of the comprehensibility of programs. Understanding ex-
isting code is one of the more time-consuming tasks in the maintenance of
software products. A recent survey of models for code understanding is given
by von Mayrhauser (1994). The models are classified as either top-down mod-
els or bottom-up models. Top-down models emphasise the nature and structure
of domain knowledge and how it is represented in and mapped onto code and
documentation information. Bottom-up models build understanding from de-
tail code using control flow and data flow.

Bottom-up models for program comprehension have been used in this thesis.
Many other factors influencing comprehensibility - i.e., naming, indentation,
typography (cf. Curtis, 1986) - have not been considered. In Chapter 3, the
code metrics of Halstead and McCabe have been used as indicators for the
comprehensibility of programs in Pascal and Miranda. There are critics of
these metrics however (e.g. Shepperd & Ince, 1994), and there is doubt about
the applicability of these metrics to program comprehension. This led to the
investigation of structure metrics. The modelling of software for structure met-
rics are described in part B, and the validation of the structure metrics in Part
C of this thesis.

As a side effect of our research described above, software metrics have been
used in investigating the assessment criteria applied in regular student as-
signments in imperative programming courses at the University of Twente
(Moerkerke et al., 1990). The software quality model developed by Boehm et al.
(1973) has been utilised to make explicit the criteria applied by lecturers in
these assessments. The ranking of criteria obtained in the Moerkerke study
provides a basis for a more objective assessment of programming assignments.

 13

Chapter 2

2. Teaching Functional Programming to First-Year
 Students 3

In the period 1986-1991, experiments have been carried out with an introduc-
tory course in computer programming, based on functional programming. Due
to thorough educational design and evaluation, a successful course has been
developed. This has led to a revision of the computer programming education in
the first year of the computer science curriculum at the University of Twente.
This chapter describes the approach, the aim of the computer programming
course, the outline and subject matter of the course and the evaluation. Educa-
tional research has been done to assess the quality of the course.

2.1 Introduction

There is a growing interest in lazy functional programming languages such as
Miranda and Haskell. It is therefore obvious to investigate whether an intro-
ductory course in computer programming can be given in a functional pro-
gramming language. Because these languages are so new, there are only a few
places in the world where functional programming is used in this role.

Until 1991, the introductory computer programming course at Twente was
based on imperative languages, that is Pascal and Modula-2. A decision to
switch to functional programming is rather drastic, and has been taken with
great care. A period of five years has preceded the introduction, in which ex-
tensive experimentation and evaluation went together with careful planning
and decision making. The functional programming course has been conducted
four times in experimental form, with 30 to 40 participants each year. By now,
the course has found its definitive form, and has been introduced for all com-

3 S.M.M. Joosten (Ed.), K.G. van den Berg & G.F. van der Hoeven (1993). Teaching Functional
Programming to First-Year Students. Journal of Functional Programming, 3(1), 49-65.

14 Chapter 2

puter science students at the start of the 1991/92 curriculum. As a conse-
quence, a large amount of didactic experience has been built upon teaching
functional programming as a first language.

In this chapter we want to motivate the choice for lazy functional pro-
gramming for the introduction to algorithmic thinking. The new programming
course is described briefly. The following questions will be answered:
• What is the aim and the subject matter of the introductory computer pro-

gramming course?
• Why did we choose for this approach?
• Which problems occurred and how did we solve them?

2.1.1 Motivation

Research on functional programming has been conducted at the University of
Twente from 1982 onwards. Part of this research was directed towards using
the functional languages in practice (Joosten, 1989). The idea to introduce our
own freshmen to computer programming by means of a functional language
dates back to 1986. Although many thought of it as unrealistic, we could think
of many reasons why this was a good idea. Some years later many of these
reasons still stand. We mention the most important ones.

The concept of algorithm is introduced with a minimum amount of distract-
ing elements such as redundant syntax, details about the order of evaluation,
and exceptional situations to keep in mind while programming. Much better
than in imperative languages, a functional language enables you to denote ap-
propriate abstractions. Clear and concise programs can be written that express
the essence of the algorithm, and nothing more. Such properties have created
the necessary room in the course to concentrate on design issues rather than
language details.

As imperative programming still dominates this field, we also want to edu-
cate our students in an imperative language. We have noted that knowledge of
two language families at such an early moment improves the attitude of stu-
dents towards programming languages. Uncritical language adoration makes
place for a more objective attitude.

Functional programming offers a suitable starting point for many fields,
such as computer algebra, artificial intelligence, formal language theory, speci-
fication etc., and appealing applications are sooner within the reach of stu-
dents.

Teaching Functional Programming to First-Year Students 15

2.1.2 The students

The course is designed for freshmen students in computer science. Most of
them are 18-19 years of age. At high school, all students have taken mathe-
matics and physics classes. Few of them have had previous exposure to com-
puter programming, many have used a computer in one way or another. Since
Dutch universities do not have admission examinations, the level of the fresh-
men cannot be influenced directly by our department.

Most of our students find jobs in business information technology (approx.
50%). The other students find jobs in many different fields, such as process
control, science education, telematics, research.

2.2 The computer programming course

In this section we describe the structure and the contents of the computer pro-
gramming course. After a general introduction, each part is discussed in more
detail.

The aim of the course is to introduce students to the concept of algorithm
and data abstraction for the purpose of designing software on a realistic scale.
After successful completion of the course, the student must be able

• to design an algorithm solving a practical problem
• to prove that an algorithm satisfies its specification
• to reproduce and to apply a number of standard algorithms (e.g. back-

tracking, combinatorial algorithms on graphs, sorting)
• to design software 'in the large' by means of data abstraction (i.e. modulari-

sation)
• implement separate modules and integrate them with modules built by fel-

low students to create a correctly functioning system

Formal and practical aspects are involved in this. Students must translate a
practical problem into an algorithmic notation. At the same time, they must
apply formal techniques to prove the correctness of an algorithm and to trans-
form it into an equivalent algorithm. Moreover, students are familiarised with
design aspects.

The whole course takes one year and consists of three terms. A term con-
sists of 8 weeks of scheduled activities followed by 4-5 weeks of 'free' time to
prepare and take examinations. In this section, the computer programming
course is described term by term. Subsequently, the instruction material is ad-
dressed.

16 Chapter 2

The form of instruction is similar in each one of the three terms: lectures (8
weekly sessions of 2 hours), tutorials (12 sessions of 2 hours during 8 weeks)
and practicals (laboratory assignments) (8 weekly sessions of 4 hours). On the
average a student spends about 50 hours on self study, involving homework,
exam preparation, reading, etc. The practicals are obligatory. A student spends
about 125 hours in total during each term.

2.2.1 Functional Programming

In the first term the students get acquainted with algorithms expressed in Mi-
randa (Turner, 1986). The subject matter covers most of Bird and Wadler
(1988). At the end of this term the students have written many different algo-
rithms in a functional language, the complexity of which is comparable to
quicksort, tree traversal, folding with minor pitfalls and the like. Also, they
have designed and built a few larger programs of a more complex nature. Stu-
dents have shown that they can define one function in several different ways,
for example recursively, with list comprehension or with standard functions.
Also, students have made several proofs based on structural induction. They
have diagnosed errors in given definitions. Finally, they have translated a
number of practical problems to suitable data structures with accompanying
functions. The remaining skills have been demonstrated in practical work.
Most of these skills are tested by means of an examination.

In the tutorials, many small exercises are done to make the theory opera-
tional. The tutorials offer a lot of practice in theoretical issues, such as proof
techniques. Examination results show that students cope with proofs well.

In the laboratory students solve realistic problems. The first sessions com-
prise small exercises that are intended to familiarise students with the lan-
guage. These exercises are done individually. Solving 'realistic' problems starts
about halfway the first term. From that point students work in pairs. There is
supervision (1 supervisor per 12 students) to prevent a pair of students getting
stuck for too long. Otherwise, they can just carry on and solve their own prob-
lems.

The first problem solving assignment is one in which students have to de-
sign the contents of a file containing information about a given situation. This
file is built as a list of n-tuples, and contains (depending on the concrete as-
signment of each student) family relations, football results, ingredients for
cooking, and so on. The students have to write a program to provide answers
to questions like: which teams have lost a football match at home? Such prob-
lems can usually be solved with a 'one-liner' that uses a list comprehension:

Teaching Functional Programming to First-Year Students 17

 lost :: [footballresult] -> [team]
 lost results = [home|(home,visitor,scoreH,scoreV)<-results
 ; scoreH < scoreV]

Usually it takes a while for students to discover that the problem can be solved
in such a simple way. Each student writes a program to answer approximately
four of such questions. The student has to create an input file with test input,
and make the whole thing work. This assignment is illustrative for the other
assignments. Other assignments include a modification of the calendar pro-
gram from Bird and Wadler (1988) according to a given requirements specifi-
cation, interactive programming and writing a program to manipulate tree
structures. By means of the lab assignments, students develop a reasonable
experience in problem solving and programming. Compared with the 'old' cur-
riculum, students solve more problems of a more complicated nature.

The reader may appreciate that we disagree with the popular belief that
functional programming would be more theoretical (than imperative pro-
gramming).

2.2.2 Imperative Programming

In the second term students learn imperative programming. The students
must learn to write a good, conventional style, imperative program. However,
in presenting the material we benefit from the abilities acquired in the first
term. One reason to expose students to a second language early is to prevent
them from acquiring unmotivated preferences for 'their' language.

We have chosen Modula-2 instead of Pascal, because Modula-2 offers stan-
dardised support for modularisation. Abstraction being a major issue in this
course, it is desirable to have a language that supports modularity well.

The imperative course must ensure that the skills of students with respect
to imperative programming are at least equal (if not better) than the skills of
students in the old curriculum. In that sense, this is an ordinary programming
course. However, the approach is different because one can take advantage of
the functional programming skills acquired so far. For example, recursion is
not treated as a separate subject, but is used without introduction. Procedures
as parameters are used from the very beginning, because students are used to
higher order functions. Function procedures are used frequently. Functions
yielding composite types as result are supported, although this is not a stan-
dard Modula-2 facility. Standard operations, such as arrays, lists and trees,
are offered in reusable modules. These operations correspond, as much as pos-
sible, with operations already known to the students from the first term. By

18 Chapter 2

using the built-in operations, students are trained to solve problems at a
higher level of abstraction. They adopt this style in the way they define their
own functions.

As mentioned, abstraction is a big issue in the second term. Students must
learn to abstract from concrete aspects, and find the right abstraction level to
express a problem. Either they use or they define the proper procedures to
reach that level of abstraction. Students learn to lift a set of standard opera-
tions to a new set of standard operations that allows them to solve their prob-
lem adequately. The concept of abstract data type is treated in Miranda and
Modula-2 in parallel.

The difference with functional programming is emphasised by reasoning
about programs in conventional state semantics. Students are taught to reason
about programs in terms of state assertions (Floyd-Hoare logic). Students
learn to consider the control flow explicitly, and to make decisions about the
representation of data. These issues (control flow and data representation) re-
main implicit in the functional world.

2.2.3 Programming techniques

In the third term, functional and imperative programming are used in the con-
text of software design. The subject matter in this term consists of two parts.
The first part is a treatment of programming techniques, standard methods
and categories of problems. Students learn to use backtracking and branch &
bound techniques, pattern recognition and parsing, finite automata in dialogue
construction, sorting and shortest path algorithms. For each of these topics the
same aspects are treated:
• standard techniques and algorithms;
• complexity considerations;
• relation between functional and imperative programming;
• data abstraction;
• documentation.
In the second part, students carry out a programming project. The students
are confronted with a system that consists of 10 modules. A prototype system,
written in Miranda, is available for experimentation purposes. This system is
written entirely in the functional realm. The students learn about the system
by studying it, and making their own version of the dialogue specification.

Then they get a partial implementation of the same system, written in
Modula-2. Two modules have to be added to this system in order to complete it.
Certain data structures are implemented 'invisibly', so students are confronted
directly with the consequences of abstract data types.

Teaching Functional Programming to First-Year Students 19

Finally, the students integrate their own modules with the modules of other
students, yielding a complete system written by several people independently.
Section 2.4 on the Programming project contains a detailed description of this
assignment.

This approach has advantages over letting students make a full program
from scratch. In this situation students have to delve into existing software,
which confronts them with important issues like maintainability, the role of
specification etc.

After completion of this third term the student is able:
• to specify a practical problem in the form of an initial algorithm;
• to transform the initial algorithm to an efficient algorithm;
• to convert this algorithm to an imperative implementation;
• to document the design process.

2.2.4 Instructional material

Much effort has been paid to the development of instructional material. Not
only have we looked carefully at the textbook, but we have also paid a lot of
attention to other kinds of written material, to support students as well as in-
structors.

As textbook for the first term we have chosen An introduction to functional
programming by R. Bird and P. Wadler (Bird & Wadler, 1988). Although we do
not advocate it for self study, this book has about the right mix of practice and
theory. We feel it is important to use a textbook that does not deal with im-
plementation of functional languages.

An alternative (at the time) would have been Wikström (1987). The latter
has a less formal approach, and therefore it has been considered as less suit-
able for this term. A more recent introductory textbook is by Holyer (1991).4

In the second term, students use lecture notes on programming in Modula-2
(with previous knowledge of functional programming) (van den Berg, 1992a).
The book written by Koffman (1988) has been chosen as a reference. In the
third term we do not use another book, but rely on our own material and the
books already mentioned.

A book of exercises has been composed, partly with worked out solutions (op
den Akker et al., 1992a). This material is a student's companion to Bird and
Wadler (1988). Scripts have been worked out for all lectures, tutorials and lab
sessions, making explicit the aim of each session (op den Akker et al., 1992b).
This is a teacher's manual to the course. The students obtain a copy of the

4 At the time of publishing this thesis we refer to Myers, Clack & Poon, 1993, 1995; Ullman, 1994

20 Chapter 2

transparencies used in the lectures, serving as a supplementary text. These
texts are all in Dutch.

In the first term students program in Miranda (Turner, 1986) in a UNIX
environment. The second term the students use Modula-2 in a MS-DOS envi-
ronment, specifically using TopSpeed Modula-2 (Jensen, 1988). In the third
term both language systems are used.

2.3 Evaluations

The development of this course started in August 1986. A five-year plan was
made for extensive experimentation, leading to the definitive introduction in
1991. In 1987/88 we started teaching with a group of 24 volunteers, out of
some 120 freshmen of the faculty of computer science. We found that this
group had scored 10% (on average) higher on the mathematics and physics
examinations in high school. Also, these volunteers scored about 10% better
than their peers in the other subjects taught in the first year at the university.
Apparently, this group was far from representative. Therefore, this course
could be used only for trying out the material. Comparative studies could not
be done until the following year. In 1988/89 we composed two representative
groups totalling 48 students. In 1989/90 we proceeded with two groups (in to-
tal 40 arbitrarily chosen students) in this new computer programming course.
In the last preliminary year, 1990/91, the course has been executed in its de-
finitive form on two groups of 34 students in total. Over these years, the func-
tional programming course has evolved considerably. Student results and ap-
preciation and learning speed have improved considerably. Also, the major
part of the old imperative curriculum is covered in the second and third term
of the course. From 1991 onwards, all students (up to 120 per annum) are tak-
ing this course.

2.3.1 Observations

Evaluation of the courses has been performed in close co-operation with the
Educational Research Centre of the university. Regular discussions have been
held between staff and students, instructors and educational experts and the
people carrying out the actual teaching. After each term, questionnaires have
been used to measure opinions and attitudes of students. In the first year of
experimentation (1987/88) exact time measurements have been performed to
assess the time spent by students. In the other years a detailed estimate of
time spending was asked in the questionnaires.

The students judge the course to be not very difficult compared to the other
courses in the first year. The rather formal textbook in the English language,

Teaching Functional Programming to First-Year Students 21

which is not native to our (Dutch) students, is not experienced as a problem.
The time expenditure is in good agreement with the norm (and is even favour-
able compared with the programming courses in the old course). In general the
students find the course pleasant and useful.

Another source of information, albeit 'soft', is the experience and the im-
pressions of participants (both students and tutors). From the open remarks
on the questionnaires, the discussions with students and colleagues and the
performance of students at the examinations, we have become convinced that
students can cope with the higher level of abstraction. We think that this is an
improvement over the classical programming education. The ability to make a
program work by means of trial and error is less useful to students than it
used to be.

Since this is a freshman course, the department is interested to know how
this course separates the better students from the poor performers. In the new
course, students are selected much more on their ability to make abstractions.
In the old course, we have the impression that smart programmers with insuf-
ficient abstraction ability would sometimes pass only because they can make
programs work.

2.3.2 Problems

Over the years, we have encountered problems that have to do with the way in
which functional programming is taught. Such problems were foreseen. In
1986, functional programming was taught only as a facultative subject for stu-
dents with reasonable experience in imperative programming. Not much in-
structional material was available in 1986 (cf. Bailes 1989; Savitch 1989), and
similar courses are mostly of a more recent date. So, the course and the mate-
rial have been developed from scratch. Teaching it to students with no previ-
ous exposure to programming was considered risky, because functional pro-
gramming has a reputation of being difficult. The importance of a freshman
course for the entire (4-year) curriculum is such that a lot of time was needed
to experiment and introduce the course. This created the opportunity to ana-
lyse educational problems properly, and think of good solutions. Three of these
problems are discussed in the following three sections.

2.3.2.1 Priority and associativity

Many problems in understanding Miranda expressions in the first courses
were connected with the priority and associativity-rules and the placing of pa-
rentheses, especially with the 'invisible' function application operator. Stu-
dents have a hard time getting used to the way operators interact with func-

22 Chapter 2

tion application. For example f . g x y is often read as ((f . g) x) y, whereas it
really means f . ((g x) y) .

To solve this problem we have introduced special exercises to train this
ability. Furthermore, we use the @-symbol during the first weeks if we need an
explicit denotation for function application. This helps when students have
problems with the implicit presence of the application operator. For students
who grasp the idea right away, we use normal notations only. Furthermore, we
tend to draw syntax trees to make the parsing of an expression explicit. The
role of parentheses is explained in connection with these trees.
So, f . g x y is written as f . g @ x @ y or with parentheses f . ((g @ x) @ y) .
The corresponding syntax tree is drawn in Figure 2.1.

 .
 / \
 f @
 / \
 @ y
 / \
 g x

Figure 2.1 Syntax tree

2.3.2.2 Type expressions

In the beginning we had much trouble with Miranda's types. Students made
many mistakes, both in the laboratory and on paper. There are several aspects
of the errors made with type expressions. Before considering solutions to this
problem, we have made an inventory of these mistakes. The following catego-
ries of mistakes were identified:

Understanding given type expressions
• The function arrow is given the same associativity as the function applica-

tion: a → b → c is read as ((a → b) → c)
• The main structure of the type expression is not recognised:

e.g. a → b → c is interpreted as the type of a 3-argument function.

Giving the type of a specific function
• No parentheses are placed around arguments that are functions
• Functions with more than one argument are not recognised
• The result type is replaced by some type expression of the right hand side of

the definition or omitted at all

Teaching Functional Programming to First-Year Students 23

• Too many restrictions are placed on types, e.g. all types are num.
• Too few restrictions are placed on types, e.g. all types are polymorphic type

variables and not bound to specific type.

Miscellaneous errors
• Errors in understanding type error messages are mostly due to a wrong in-

terpretation of terms used in these messages: cannot unify, cannot apply,
cannot identify. Frequently, students do not use the actual content of the er-
ror message, but solely the indication of the place where something is
wrong.

• Errors due to naming conventions, such as xs and ys for lists. Several stu-
dents think that the computer derives the type [∗] based on these names.

• Type expressions are mixed with ordinary expressions, like this for example:
last [∗] = head (reverse [∗])

The problems with types were also clearly visible in the evaluation results in
the first two years of experimentation (van den Berg & Pilot, 1989). 'Giving the
type of a function' was among the first three subjects in the list of ten most dif-
ficult issues.

Major adjustments of the course have taken place, based on these observa-
tions. Firstly, we relaxed the requirement that a student should be able to de-
rive the type from an expression. Now we require that the students can write
(as opposed to derive) the type of their own definitions. In order to give the
necessary practice and to advocate good programming style, we insist that the
type is given explicitly with every definition. Interpreting error messages re-
mains a problem. Phrases like ‘cannot unify’, ‘cannot apply’ and ‘cannot iden-
tify’ are explained in an introductory practical assignment, which helps a lit-
tle. As a result of all these measures, the topic of typing has disappeared from
the top ten of difficult issues.

2.3.2.3 Computational model

In the experimental phase of the courses, the students received the functional
and imperative programming courses in parallel. Interference of both courses
has been observed, especially in the case of the computational model. The
computational model for functional programming is based on rewriting and
lazy evaluation, for imperative programs on memory states and state transi-
tions. Some errors occurred because students used the imperative model in the
functional programming domain:
• Some students thought that the definitions in the script should have a par-

ticular order: ‘otherwise the value of a variable is not known’.

24 Chapter 2

• They assumed changes in the value of variables by function application; e.g.
taking the tail of a list ys would change the list, in other words they ex-
pected the effect of an assignment ys := tail (ys).

• Some felt the need to store intermediate results, otherwise these results
would be lost, e.g. they wanted to save the original list before calculating the
last element with last xs = head (reverse xs).

Apparently, some of the misconceptions are induced by imperative language
use in the functional domain: e.g. names like take, drop, remove, filter could
imply some (side-) effects on the argument of the function. This interference
nearly completely disappeared after the imperative programming course has
been placed after the functional course.

2.3.3 Functional versus imperative programming 5

One educational experiment has been conducted which is of particular inter-
est: an experimental comparison of the programming abilities of students who
have been first exposed to computer programming by means of Miranda versus
those who followed conventional programming education based on Modula-2.
Since the functional programming course was given to a part of the total first-
year population, we had an ideal opportunity to do comparative research (van
den Berg, Massink & Pilot, 1989).

In the first experimental design (see Table 2.1), there are two equivalent
groups of first year students in computing science: the mathematics and phys-
ics grades were used as pre-test. The two groups received different treatments:
the functional programming course (FP) or the imperative programming
course (IP). Two experimental conditions were provided: time pressure and no
time pressure. The programming abilities were tested after the course: in the
post-test the students received a number of assignments on different aspects of
programming. These tests differed only in the programming language used.
The number of students N for each condition is given in Table 2.1.

 Post-test

Group Treatment Time pressure No time pressure
FP Functional N = 15 N = 14
IP Imperative N = 11 N = 10

 Table 2.1 Number of students N in experimental design 1

5 The text and tables in this section of the thesis differ slightly from the original published text

Teaching Functional Programming to First-Year Students 25

Several aspects of the programming ability of students have been tested in the
given assignments. These abilities are the following: to specify a function; to
write comments to a function; to write the type of a function; to identify se-
mantic equivalence between different program constructs; and to use struc-
tured data types.

The F-statistic has been used to test differences between the means of these
quantities. No significant differences (α = 0.10) have been found for each of
these abilities in both conditions.

In a subsequent experiment, two assignments were offered with one condition
only (no time pressure). The first of these assignments (Assignment 1) com-
prised the modification of an existing program. Assignment 2 was the design
and implementation of a new program for a given specification. The experi-
mental design, with the number of students per condition, is given in Table
2.2.

 Post-test

Group

Treatment

Assignment 1:
Modification

Assignment 2:
Design + Implementation

FP Functional N = 11 N = 8
IP Imperative N = 9 N = 10

Table 2.2 Number of students N in experimental design 2

For the modification assignment (Assignment 1), the following four quantities
were determined: the number of new local functions; the number of new global
functions; the number of modified functions; and the percentage of students
who modified the main function.

 Statistics
Quantity Group Mean F p
New local functions FP

IP
0.4
0.0

4.6 .045

New global functions FP
IP

1.5
0.3

16.6 .001

Modified functions FP
IP

0.1
0.8

17.0 .001

Modification main function FP
IP

82%
22%

9.9 .006

Table 2.3 Results for modification assignment

26 Chapter 2

Again, the F-statistic has been used to test differences of the means of these
quantities. The results (means, F-value and p-value) are shown in Table 2.3.
The differences are significant (α = 0.05).

For the design and implementation assignment (Assignment 2), a program call
graph has been derived for each solution. The following five quantities were
determined: the number of user defined functions in the graph; the number of
levels in the graph (transformed to a tree by removing recursive calls); the
maximum number of functions directly called by another function; the number
of functions identified in the design; and the coverage, i.e. the percentage of
design functions recognisable in the implementation.

The results are shown in Table 2.4. There was no significant difference
found between the two groups on the maximum number of functions directly
called by another function and not on the number of functions identified in the
design. The differences for the other quantities are significant (α = 0.10).

 Statistics
Quantity Group Mean F p
User defined functions FP

IP
6.9
2.6

16.4 .001

Levels in program graph FP
IP

1.8
0.7

10.3 .005

Coverage design/program FP
IP

92%
57%

3.9 .064

Table 2.4 Results for design and implementation assignment

From the results for the modification assignment it can be concluded that stu-
dents in the FP-group (the functional programmers) introduced significantly
more new functions to accomplish the required modification than students in
the IP-group (the imperative programmers). The latter realise the required
new functionality by changing the existing program at the lowest level code. At
the main level, this change is less frequently visible for these students than for
students in the FP-group.

From the results for design and implementation assignment it can be con-
cluded that the correspondence between design and program is significant
higher for students in the FP-group than in the IP-group. Students in the IP-
group use more levels of abstractions with more functions in their programs
than students in the FP-group.

Although it is rather subjective to derive the quality of programs from crite-
ria used above, it could be argued that the results on these experiments give

Teaching Functional Programming to First-Year Students 27

evidence that students in the functional programming group produce programs
with a better structure than students in the imperative programming group.

2.4 Programming project

In this section we describe a programming project that is conducted at the end
of the third term. It serves the purpose of illustrating the type of assignments
students do. It allows the reader to form an idea of the level obtained at the
end of the first year. The description starts with a discussion about the educa-
tional and organisational aspects of the assignment. After that, we show some
technical details.

2.4.1 Organisation

In the second half of the third term, students work on a larger assignment.
Each student spends 16 hours in the laboratory on this assignment, divided in
four sessions of four hours each. The work is done in pairs. During the first
session, the students are confronted with a Miranda prototype of the system.
In the end, this system will be built by those students in Modula-2. They are
supposed to experiment with the prototype, to carefully analyse its behaviour,
and to present the results of their analysis in the form of an external specifica-
tion of the system.

The next two sessions, eight hours in total, are devoted to the implementa-
tion of parts of the system. The students will have to integrate their work with
the work of others, so they realise the importance of sticking to the specifica-
tion, test thoroughly and remain on schedule. The external specification is
used as a starting point. Students do not use the external specification they
built themselves, for that was handed in earlier. Instead, they all use the same
specification provided by the supervisor. This annihilates the risk of delay for
students who have had trouble making the specifications. In this way, stu-
dents skip part of the design trajectory. What they are supposed to do here, is
just to fill in the design. This requires a passive understanding of the structure
of the system, the skills required to come to a satisfactory system design by
themselves are not taught nor trained in this course.

The final session is for integration of system parts. Four couples of students
will now merge their material into one complete and working system.

2.4.2 Railway information system

The students work on a restricted railway information system. In this section
we give an overview of the system. We hope to give the reader a feeling for the

28 Chapter 2

kind of application we are talking about. This description is not intended to be
complete.

The railway information system computes the price of the cheapest ticket
for a given journey, taking into account possible reduced fares for reduction-
pass holders, group tickets, etc. The system has two important aspects. One is
the correct functionality: it should collect the proper data on a journey, and
correctly compute the price of the ticket from these data and the information it
has stored on the costs of various kinds of tickets. The other aspect is its user
interface. It should facilitate the presentation of data on a journey, and handle
errors in the input in a clear and understandable way. Any user should be able
to consult the system, without much explanation.

 ticketPriceSys :: aTable -> aTicketStream -> aPriceStream
 ticketPriceSys ticketPriceTable
 = map (ticketPrice ticketPriceTable)
 ticketPrice :: aTable -> aTicket -> aPrice
 ticketPrice table ticket
 = bp , if n=1
 = min2 np gp, otherwise
 where
 bp = basePrice
 table
 dist
 (sinOrRet ticket)
 (class ticket)
 (fulOrRed ticket)
 dist = distance table (dep ticket) (dest ticket)
 np = bp * n
 gp = groupPrice table n
 n = numberOfP ticket

Table 2.5 The railway system function

The two main requirements of the external specification are that it defines the
functional behaviour of the system, and that it defines the form and the nature
of the interaction between user and system. The functional behaviour is de-
scribed by means of abstract data types. Students have to realise which opera-
tions are necessary and have to worry about the exact content of these opera-
tions. There is a close relation between the abstract data types in the Miranda
program and the modules in the Modula-2 implementation. The interaction
between the user and the system is described by regular expressions over some
alphabet of events. Both elements in this specification lead to a precise formu-

Teaching Functional Programming to First-Year Students 29

lation of pre- and postconditions, which is useful when designing the Modula-2
code.

To conclude this account of the railway information system, we present the
main piece of the functional program: the system function ticketPriceSys
(Table 2.5). This code was made by a student by way of specifying the interac-
tive behaviour of the system at the global level. Students are expected to pro-
duce such code in the external specification they make in the first session of
this assignment.

The presentation of these functions presupposes the introduction of types
and functions, which can be done at an abstract level (Table 2.6). Somewhere
the specification must show that the following (abstract) types and functions
are involved, given the types: aTable, aTicket, aPrice, aNumberOfP, aDistance,
aStation.

 aTicketStream == [aTicket]
 aPriceStream == [aPrice]
 aWay ::= Single | Return
 aClass ::= First | Second
 aFare ::= Full | Reduced

 dep :: aTicket -> aStation
 dest :: aTicket -> aStation
 sinOrRet :: aTicket -> aWay
 class :: aTicket -> aClass
 fulOrRed :: aTicket -> aFare
 numberOfP :: aTicket -> aNumberOfP
 distance :: aTable -> aStation -> aStation -> aDistance
 basePrice :: aTable -> aDistance -> aWay -> aClass ->
 aFare -> aPrice
 groupPrice :: aTable -> aNumberOfP -> aPrice

Table 2.6 The types of the functions

2.4.3 Experience

In itself, the assignment is not a difficult one. Most of the students will suc-
ceed in the integration of their own part with those of their fellow students.
However, it turns out to be very illuminating in several aspects. It confronts
students with their own mistakes, their lack of thorough testing, the problems
caused by ill-structured code, and so on. It clearly shows the necessity to stick
to specifications, if you want your part of the system to co-operate with other
parts. It shows that it is most useful to test parts of the system separately and

30 Chapter 2

thoroughly before they are put together. And finally, it confronts students with
the problems of version management: it happens more than once that they
start integrating versions of modules which are not the final ones, e.g. because
they contain material which was put there solely for the purpose of testing.

It is worthwhile to observe the students as they work. Some of them sit
down at the keyboard and do 'trial and error' development. Others sit down
and think everything through, starting from the (given) Miranda prototype
and the specification down to the Modula-2 code. During the integration ses-
sion, the modules produced by the former students usually contain the prob-
lems, whereas the modules of the 'thinkers' often operate flawlessly.

The role of functional programming in this assignment is restricted. It is
true that in this assignment for the first time students see a larger piece of
software, which performs a useful function, and which is written in Miranda.
But they do not themselves develop program of comparable size in Miranda.
The skills in functional programming are used to capture the essence of the
functional behaviour of a system.

2.4.4 Role of functional programming

There are two basically different ways of using a functional program as an in-
termediate step towards an efficient imperative implementation. One way is
by doing program transformations and the other way is by programming and
justification. The first 'method' contains the following steps:
1. to write the functional program
2. to transform this program by means of correctness preserving steps until

the program is fully tail recursive without using intricacies.
3. to rewrite the result (mechanically) into an imperative language.

The second way is much more informal. A functional program is written and
used as a formal specification. The imperative program is developed 'as usual',
in which the experience of making the specification makes the big difference in
the quality of the resulting product. Proof techniques must be used to get an a
posteriori justification for the program.

We made the choice for the second way on a rather practical basis: The
transformational approach requires a greater skill and education than the sec-
ond approach. We have educated students in program transformations to a
level where they can make proofs. There is no room in the first year program
to enhance these skills further to a level in which transformational program-
ming becomes feasible. In the current situation, these skills do not belong in
the first year. This motivates our choice for a 'limited' importance of functional
programming in the design of software.

Teaching Functional Programming to First-Year Students 31

Students who have built (their share of) the railway information system re-
port that they appreciate what they have learnt: to capture the functionality of
a system in a concise functional specification that fits on the back of a busi-
ness-card. At the same time they find it useful to have the experience of suc-
cessfully integrating their work with the work of so many other students. Stu-
dents appreciate the value of modules and abstract data types in software de-
sign. This is an issue that is taught better by experience than in the classroom.

2.5 Conclusion

The design and implementation of a new computer programming course was
completed successfully within the original time constraints.

Based on research done in this period, we conclude that the quality of the
introductory computer programming course has improved. The students learn
to handle abstraction as a design tool and are able to describe their problem
formally. The skills in formal manipulations have improved. Students solve
more problems that are also more challenging. Because imperative program-
ming is still taught, no problems need to be expected with respect to the con-
nection to other (existing) parts of the curriculum. Passing or failing of stu-
dents depends more on their abstraction skills and less on their coding abili-
ties. Appreciation of students is very high.

32 Chapter 2

 33

Chapter 3

3. Syntactic Complexity Metrics and the Readability
 of Functional Programs 6

This chapter reports on the definition and the measurement of the software
complexity metrics of Halstead (1977) and McCabe (1976) for programs written
in the functional programming language Miranda. An automated measurement
of these metrics is described. In a case study, the correlation is established be-
tween the complexity metrics and the expert assessment of the readability of
programs in Miranda, and compared with those for programs in Pascal.

3.1 Introduction

Computer programs are written in order to carry out the solution to a problem
by a computer. During the construction of programs there is a continual need
to read and understand the text of programs: for the further development of
the program to meet new specifications, for the modification of programs to
correct errors, or to consider programs or program parts for possible reuse. The
programs can be written in various programming languages, which may differ
in their expressive power. The expressive power of a language is reflected in
the ability to write programs that are both succinct and understandable
(Fleck, 1990). Understandability or readability will be defined as the extent to
which the function of the program and its components are easily discerned by
reading the program text (Boehm et al., 1978). We will consider the readability
of programs written in the functional programming language Miranda
(Turner, 1986) and the imperative programming language Pascal.

6 K.G. van den Berg (1992). Syntactic Complexity Metrics and the Readability of Programs in a
Functional Computer Language. In: F.L. Engel, et al. (Eds), Cognitive Modelling and Interactive
Environments in Language Learning. NATO Advanced Science Institute Series, Berlin: Springer,
199-206.

34 Chapter 3

The basic difference between functional and imperative programming lan-
guages lies in the hiding of the computational model (Petre & Winder, 1990).
The imperative model incorporates the Von Neuman machine characteristics
in the notions of assignment, state and effect. A characteristic of this language
class is the explicit flow of control, e.g. sequencing, selection and repetition. In
assignments, the value of memory places denoted with variables is changed
during program execution. This model of operation by change of state and by
alteration of variable values is also named 'computation by effect'. The func-
tional model is characterised by 'computation by value'. Functions return val-
ues and have no side-effects, and expressions represent values. There is no no-
tion of updatable memory accessible by instruction. The program consists of a
script with a number of mathematical-like definitions and an expression that
must be evaluated. Functions can be passed as arguments to other functions
and can be the result of a function application (higher-order functions). These
programs possess the property of referential transparency, which means that
in a fixed context the replacement of a subexpression by its value is completely
independent of the surrounding expression. Therefore functional programming
is more closely related to mathematical activities (Bird & Wadler, 1988).

There is a growing interest in functional programming languages, because
of their expressive power and the possibility to reason about correctness of
programs. There are claims on the readability of functional programs, for ex-
ample: 'In many cases the functional programming style yields more elegant
and comprehensible programs than the imperative programming style'
(Springer & Friedman, 1990) and 'Functional programming leads to programs
which are exceptionally clear and concise and to the prospect of greatly in-
creased software reliability and development speed' (Bailey, 1990). In a case
study on the productivity of programming in a functional programming envi-
ronment, some of these claims have been confirmed (Sanders, 1989).

Moreover, the learning of programming in a functional programming style
should have advantages over learning in an imperative style (Springer &
Friedman, 1990; Bailes & Salzman, 1989). At the University of Twente, first
year students in Computer Science receive a course in functional program-
ming, which forms the base of the programming curriculum (Joosten & van
den Berg, 1990). An important aspect of teaching programming is to give feed-
back to the novice programmers on the readability of their programs and in-
termediate products during the design process. This readability can be as-
sessed by teachers. It is also possible to measure internal attributes of pro-
grams based on the syntax of the program text that correlate with the read-
ability of programs. These values can be used in feedback to the students,
which may be interactively during the program development. The measures of

Syntactic Complexity Metrics 35

software attributes are usually called software metrics and are described in
the following section. In a subsequent case study we will report on the correla-
tion between readability and the software metrics for programs in Miranda,
and compare this with the correlation for programs in Pascal.

3.2 Software Metrics

Software metrics are used to assess the process of the construction of software,
the products of this process, and the use of human and machine resources
(Conte, Dunsmore & Shen, 1986; Fenton, 1991). We will focus our discussion
on the use of human resources in the interaction with software. This attribute
of software is referred to as the psychological complexity (Curtis et al., 1979),
and we restrict ourselves to the readability or comprehensibility of the pro-
gram text. The computational complexity, i.e. the efficiency of the use of the
machine resources (time and memory space), will not be considered here.

There are several software metrics for the static syntactic complexity of
program text described in the literature. We will use the software metrics
based on Halstead's Software Science (1977) and the cyclomatic complexity
number of McCabe (1976). The study of Curtis (1981) shows empirical evidence
that the complexity metrics of McCabe and Halstead relate to the psychologi-
cal complexity, as expressed in the difficulty in understanding and modifying
software. The relation between syntactic complexity and cognitive complexity
has been investigated by Khalil & Clark (1989). Shen, Conte & Dunsmore
(1983) give a critical review of Software Science. They show that the effort E,
as defined by Halstead (see below), correlates with the understandability of
programs. However, the psychological aspects of the Halstead metrics have
been criticised (Coulter, 1983).

The software metrics of Halstead and McCabe have been applied mainly to
programs written in imperative programming languages. We have derived
these metrics for the functional programming language Miranda. The defini-
tion of these metrics for this language will be given in the section below, fol-
lowed by a description of an automated measurement of the metrics.

3.2.1 Halstead and McCabe Metrics

Halstead (1977) proposed in his theory of Software Science that some useful
measures for computer programs can be derived from four basic metrics: the
count of unique operands and operators, and their total frequencies. A symbol
in a program that specifies an action is considered an operator, while a symbol
used to represent data is considered an operand. Among the derived metrics

36 Chapter 3

are the program volume, the level of implementation and the programming ef-
fort.

The basic metrics are defined as the number of unique operators η1, the
number of unique operands η2, the total number of operators N1, and the total
number of operands N2. The vocabulary of a program is defined as η = η1 + η2,
and the length of a program as the total number of tokens N = N1 + N2. The
volume (size) of a program is defined as V = N × log2 η. The potential volume
V* of a program represents the size of the program in its most succinct form.
Halstead showed that V* = (2 + η2*) × log2 (2 + η2*), where η2* is the number
of different input/output parameters. The program level, or the level of imple-
mentation, L is the ratio of the potential volume V* and its actual volume V,
i.e. L = V* / V. The effort to generate a program is defined by the relation E =
V / L. Other quantities have been defined and relations between these quanti-
ties can be obtained by algebraic manipulation.

McCabe (1976) developed a measure of software based on the decision
structure of a program. The program is represented as a graph G with a
unique entry and exit point. The edges represent branches caused by a deci-
sion, and the nodes represent a piece of code. The metric counts the number of
linear independent paths through a program and is also called the cyclomatic
complexity number. This metric is related to the difficulty of testing a pro-
gram. The cyclomatic complexity number is v(G) = e - n + 2. The number of
edges in the graph is e and the number of nodes is n. It can be shown that v(G)
is equal to the number of decisions in a program plus one, provided that all de-
cision nodes have outdegree 2.

3.2.2 Metrics for Pascal and Miranda

The Halstead and McCabe metrics for the imperative programming language
Pascal have been used as described by Conte (Conte et al., 1986). All variables
and constants are counted as operands. The operators are the arithmetic op-
erators, relational operators, boolean operators, procedure and function counts,
and multiple entities BEGIN END, IF THEN, IF THEN ELSE, WHILE DO,
FOR DO, REPEAT UNTIL, CASE END, RECORD END, ARRAY OF, SET OF.
The decision count for the cyclomatic complexity number is based on the occur-
rence of the symbols WHILE, FOR, REPEAT, IF, OTHERWISE, AND, OR,
PROCEDURE, FUNCTION, PROGRAM, CASE and commas in the CASE
statement.

We have developed the Halstead and McCabe metrics for the functional
programming language Miranda. (Similar metrics have been established by
Samson et al. (1989), for the languages Hope and OBJ.) We consider constants
and all identifiers that are not operators as operands. The operators are the

Syntactic Complexity Metrics 37

standard operators (including the list operators for list construction ":", list
concatenation "++", list difference "--" and selection from a list "!"), the function
name in the right hand side (RHS) of function definitions, parameters in a
compound definition, delimiters in expressions ("[]", "()","..",";",","), and in
function definitions the symbols "otherwise" and "where".

The number of decisions has to incorporate the use of patterns in argu-
ments of function definitions, in compound definitions and in list comprehen-
sions (i.e. expressions from the Zermelo Frankel set theory). A function defini-
tion consists of a left-hand side (LHS), the symbol "=" and the right-hand side
(RHS).

The cyclomatic complexity number of a script is equal to 1 + the sum of cyc-
lomatic complexity numbers of each function definition. The cyclomatic com-
plexity number of a function definition is equal to the sum of the pattern com-
plexity of the LHS, the number of guards in the RHS, the number of logical
operators in the RHS, the number of filters in a list comprehension in the
RHS, and the pattern complexity in a list comprehension in the RHS. The pat-
tern complexity is equal to the number of identifiers in the pattern, minus the
number of unique identifiers in the pattern, plus the number of arguments
that are not identifiers.

We illustrate the determination of these metric values for a small func-
tional program. Suppose we want to calculate a list with all numbers greater
than 5 of a given list with numbers, e.g. filter (>5) [1,7,2,6] . In Mi-
randa the definition of filter reads as follows, where [] denotes the empty
list, and (x:xs) denotes an item x at the head of a list of items xs.

 filter p [] = []
 filter p (x:xs) = x : filter p xs , p x
 = filter p xs , otherwise

In this example, the Halstead metric values are η1 = 7, N1 = 14, η2 = 3 and N2
= 11. These values have been derived from the following < operator , frequency
> tuples: < "()" , 1 >, < "[]" , 2 >, < "," , 1 >, < "otherwise" , 1 >, < ":" , 2 >, < "=" ,
3 >, < "filter" , 4 >. The < operand , frequency > tuples are: < "x ", 3 >, < "xs" , 3
>, < "p" , 5 >. We assume η2* = η2 = 3 . The other Halstead quantities can be
derived from these basic values.

The calculation of the McCabe metric value proceeds as follows. The num-
ber of arguments that are not identifiers is 2, resulting in a pattern complexity
of 2. The number of guards is 1. The cyclomatic complexity number is 1 + (1 +
2) = 4.

38 Chapter 3

3.2.3 Automated measurement

The metrics of Halstead and McCabe are based on the lexical and syntactical
analysis of the program code. It is possible to use standard tools like a scanner
and parser to automate the measurement of these metric values. In our study
we used the Cornell Synthesizer Generator (Reps & Teitelbaum, 1989; Rob-
bers, 1990). A schematic view of the analyser is given in Figure 3.2. (A similar
metric analyser has been developed by Henry & Goff, 1989.)

Metric description

Program text

Language description

Attributed
abstract

syntax tree

Evaluated
attributes

Metric
values

 Figure 3.2 Schematic view of the software metric analyser

From a syntactical correct program text an abstract syntax tree is derived us-
ing the parse rules and a language description in the Extended Backus Naur
Form. The metric values are calculated by means of attribute rules, provided
in the metric description. For each node of the tree we can determine the com-
plexity from the lower parts in the tree. The attribute rules have been devel-
oped for Pascal and Miranda in order to calculate the Halstead and McCabe
metrics, and can be extended to other metrics. The output of the generator can
be used in an auxiliary program to calculate the actual metric values.

3.3 Case Study

In the case study we explored the application of the syntactic complexity met-
rics described in the previous sections to programs in the functional program-
ming language Miranda, and we established the correlation between these
metrics and the readability of the programs. We used programs written in the
language Pascal for comparison. The programs were taken from two groups of
first year undergraduate students in Computer Science, after a programming
course of one term. The (first) experimental group in Miranda and the second
(control) group in Pascal. The students were asked to extend a existing pro-
gram in the respective language. We compared their modifications of this ref-
erence program. The reference program carried out the conversion of a string
representing a Roman number, e.g. MCLVII, to the corresponding decimal
number, 1157. The extension of the program should allow the usual abbrevia-
tions in the input string, such as XL instead of XXXX. A conversion of the
string MCXLVII should result in the decimal value 1147.

Syntactic Complexity Metrics 39

The readability of programs was assessed by 11 experts, all lecturers in
Computer Science. They established a rank-order of readability for 9 modifica-
tions of the reference program in Pascal from the control group, and 8 modifi-
cations in Miranda from the experimental group. The agreement between the
rankings is given by Kendall's coefficient of concordance W (Lindeman, Mer-
enda & Gold, 1980). The results are given in Table 3.1. From these rankings
we calculated the average expert rank of the programs in each group.

Language Number of programs Correlation Significance

Pascal 9 W = .74 χ2(8) = 65 *
Miranda 8 W = .50 χ2(7) = 39 *

Notes. The correlation W is Kendall's coefficient of concordance.
The significance is tested by means of the χ2-test. *p < .001.

 Table 3.1 Correlation between expert rankings of readability for Pascal and
Miranda programs

Using the metric analyser, we determined the values of the software metrics
for the reference programs and the modified programs in both languages. The
ratings for the modified programs on Halstead's effort E and McCabe's cyclo-
matic complexity number were converted to rankings, or an average rank in
the case of equal ratings. The correlation between these rankings and the av-
erage expert rank was calculated with Spearman's rank-order correlation coef-
ficient rs. The values of these correlations are given in Table 3.2. We will
evaluate the results of this case study in the following section.

Complexity 1 Complexity 2 Correlation Significance
Extended Pascal programs (N = 9)

Effort Cycl Compl Number rs = .61 t(7) = 2.01 ***
Av Expert Rank Effort rs = .90 t(7) = 5.46 ****
Av Expert Rank Cycl Compl Number rs = .58 t(7) = 1.88 ***

Extended Miranda programs (N = 8)
Effort Cycl Compl Number rs = .89 t(6) = 4.78 ****

Av Expert Rank Effort rs = .38 t(6) = 1.01 *
Av Expert Rank Cycl Compl Number rs = .56 t(6) = 1.66 **

Notes. The correlation rs is Spearman's rank-order correlation coefficient.
The significance is tested by means of the Student t-test. *p<.20 **p<.10 ***p<.05 ****p<.01

Table 3.2 Correlation between rankings of complexities for Pascal and
Miranda programs

40 Chapter 3

3.4 Discussion

The metrics of Halstead and McCabe for the static syntactic complexity of pro-
grams in the functional programming language Miranda have been defined
and the measurement has been automated. In the case study we compared the
application of these metrics to programs in the functional language Miranda
and the imperative language Pascal. A ranking of the expert assessment on
readability was taken as a measure of the psychological complexity. From the
values of the correlation between these expert rankings, we conclude that
there is fair agreement between experts about the ranking of programs in Pas-
cal (W = 0.74), but the agreement is low for programs in Miranda (W = 0.50).
This could mean that there is not as much an accepted standard on readability
for Miranda programs as for Pascal programs.

The correlation between the effort rank and the rank on the cyclomatic
complexity number for the programs in Pascal is rs = 0.61, and for Miranda rs
= 0.89. Both correlations are significant. The high value for Miranda indicates
a consistent measurement of the syntactic complexity metrics as developed in
this study.

The correlation between the average expert rank and the cyclomatic com-
plexity order for Pascal is rs = 0.58, and for Miranda rs = 0.56. The correlation
between the average expert rank and the effort order for Pascal is rs = 0.90,
and for Miranda rs = 0.38. Both correlations for Pascal are high and signifi-
cant, which is in agreement with the literature. The two correlations for Mi-
randa are not significant. Obviously, this could be caused by the small number
of programs used in this study. There are two reasons which could explain the
low correlations for Miranda. Firstly, the value on the coefficient of concor-
dance, indicating the agreement between experts on readability, for Miranda
programs is low (see above). The second reason can be found in a more general
argument given by Halstead (1977). He pointed to the dual role of the level of
implementation of a program with respect to the understandability. For an ex-
pert the understandability is proportional to the program level, whereas for a
novice the understandability is inversely proportional to the program level. In
other linguistic studies, it was concluded that experienced writers cannot re-
liably predict the readability to novices of text in natural languages (Baker et
al., 1988).

Further study of software metrics for functional programming languages is
required. There is a need to differentiate between metric values for various op-
erators. Especially the use of higher-order functions can result in concise pro-
grams, and the count of such an operator should have a different contribution
to the complexity than a simple arithmetic operator. It is necessary to estab-

Syntactic Complexity Metrics 41

lish the psychological complexity of each elementary language construct and
the complexity of the compositions of these constructs in programs. This could
be carried out in an axiomatic approach as outlined by Fenton (1991), along
with contributions from measurement theory to software measurement (We-
yuker, 1988; Zuse, 1991).

The complexity of the program text can be analysed at different linguistic
levels: at lexical level, i.e. the vocabulary used in the program, at syntactical
level, i.e. the linguistic structures in the program, and at the level of the pro-
gram text as a whole, including the composition (sequencing and nesting) of
linguistic structures. In this study we used the parsing of the program text by
the computer as a model for the parsing by the human reader. The analysis
should be based on a psychologically plausible parsing model, which is part of
a cognitive model for the comprehension process. The Halstead metrics and
McCabe metrics focus on the lexical and syntactic levels, and may not repre-
sent the most adequate levels for measurement of program comprehensibility
(Card & Glass, 1990). We also have to incorporate the text level of analysis, as
we see in discussions on readability and linguistic complexity of natural lan-
guage texts (Frazier, 1988). The processing of program text has to be formu-
lated in terms of comprehension of chunks of code and programming plans
(Davies, 1989; Green & Borning, 1990), and the problem-solving capacities of
programmers (Curtis, 1979). Furthermore, if we want to compare the under-
standability and the expressive power of programming languages we should
weigh up metrics for programs and metrics for languages (Sammet, 1981).

Before metrics can be used in teaching programming as feedback to stu-
dents on their programs, further development of software metrics is necessary
together with the development of criteria to assess the readability of programs
written in a functional programming language.

Acknowledgement

I would like to thank J. van Merriënboer and H. Koppelman for their com-
ments on an earlier version of this chapter; M. Massink for setting up the ex-
periment with two programming groups; R. Couweleers and D. de Rooij for the
implementation of the metric analyser and the collection of data7. I thank G.
Kempen for bringing to my attention recent work by Green and Borning.

7 This research was carried out in 1990. Sadly, R. Couweleers passed away in 1991.

42 Chapter 3

 43

Part B : Modelling

Issues

Many problems with software metrics are due to ill-conceived and poorly ar-
ticulated models that underlie the metrics (Shepperd & Ince, 1994). The at-
tribute to be measured should be made explicit. In Chapter 4, the attribute is
the ‘structure’ of imperative programs. The traditional flowgraph model has
been modified to capture nesting on conditional expressions in statements. The
proposed structure graphs can be decomposed in prime structures by sequenc-
ing and nesting operations, as with traditional control-flow graphs. Software
structure metrics based on flowgraphs and decomposition trees can also be
used for structure graphs. In a separate paper (not included in this thesis), the
approach to software structure metrics has been generalised to arbitrary sets
of decomposition operations for flowgraphs (van den Broek & van den Berg,
1995).

Most of the modelling of programs has been carried out in the domain of im-
perative programming. In Chapter 5, the modelling of programs by flowgraphs
and callgraphs is extended to functional programs. The proposed control-flow
model captures the operational semantics of Miranda function definitions.
Both types of abstractions, callgraphs and flowgraphs, are independent of the
programming paradigm. Software metrics based on these abstractions can be
used to compare attributes of programs. The modelling of Miranda type ex-
pressions by parse trees is described in part C (Chapters 6 and 7). Modelling
as part of the metric development process is described in Chapter 8.

Tools

Based on the flowgraph model and the callgraph model, a tool has been devel-
oped for the static analysis of Miranda programs. The tool is described in
Chapter 5. The implementation is based on attributed grammars, as with the
tool in Chapter 3 for the Halstead and McCabe metrics. This type of analysis is

44 Part B: Modelling

supplementary to other static analyses performed on functional programs,
such as strictness analysis and the type inference system (Peyton Jones, 1987;
Plasmeijer & van Eekelen, 1993).

The use of such tools is quite diverse: for example during the software de-
velopment or in the maintenance phase (e.g. Bache & Bazzana, 1994). They
are used in reverse engineering and in anomaly checking. In an educational
setting, these tools can be used to give students feedback on their software de-
velopment process to compare their design and implementation. They have
been used in assessment of the quality of students’ programs (e.g. Ceilidh:
Benford et al., 1994).

The modelling of software is an essential stage in establishing assessment cri-
teria for the quality of software. The development of tools is important to as-
sure an objective assessment. However, once this has been achieved, one has to
answer the question how valid the numbers are, and how these numbers can
be used for different purposes. In fact, the Goal-Question-Metric paradigm
(Basili & Rombach, 1988) reverses the order of these activities. In part C of
this thesis, the issue of validation is addressed, with a case study on Miranda
type expressions and with an experiment based on the flowgraph model for
Miranda function definitions.

 45

Chapter 4

4. Modelling Software for Structure Metrics 8

In the traditional approach to structure software metrics, software is modelled
by means of flowgraphs. A tacit assumption in this approach is that the struc-
ture of a program is reflected by the structure of the flowgraph. When only the
flow of control between commands is considered this assumption is valid; it is
no longer valid however when also the control flow inside expressions is consid-
ered. In this chapter, we introduce structure graphs for the modelling of soft-
ware. Structure graphs can, just as flowgraphs, be uniquely decomposed into a
hierarchy of indecomposable prime structures. We show how programs in an
imperative language can be modelled by means of structure graphs in such a
way that the structure of a program is always reflected by the structure of the
corresponding structure graph.

4.1 Introduction

In the traditional approach to structure software metrics (Fenton, 1991; Fen-
ton & Kaposi, 1987), a program in an imperative language is mapped onto an
abstract program, whereby program parts without structure are replaced by
atomic actions; the resulting abstract program is mapped onto a flowgraph,
and this flowgraph is decomposed into a hierarchy of primes (i.e. irreducible
flowgraphs), which results in a decomposition tree onto which metric functions
are applied. Where these metric functions are defined inductively, the metrics
are called structure metrics. Flowgraphs will be defined formally in section 4.2
of this chapter. First, we will consider the modelling of imperative program
fragments by flowgraphs.

An atomic action in a program is modelled by a P1-flowgraph, which con-
sists of a start node, a stop node, and one edge between these nodes. The flow-

8 This chapter is an adaptation of: P.M. van den Broek & K.G. van den Berg (1993). Modelling
Software for Structure Metrics. Memoranda Informatica 93-12. Enschede: University of Twente.

46 Chapter 4

graph for an abstract program is constructed by associating a node with each
atomic action, adding a stop node, identifying the node for the first atomic ac-
tion as the start node, and drawing arcs from each node to its possible succes-
sors. Here the stop node is a successor for all possible last atomic actions. For
instance, consider the following abstract program fragment:

 WHILE a DO b END

This program fragment is modelled by the flowgraph D2 in Figure 4.1.

a

b

Figure 4.1 Flowgraph D2 of WHILE a DO b END

Note that the node corresponding to b is a procedure node (has outdegree 1)
and that the node corresponding to a is not a procedure node. This means that
on node b another flowgraph can be nested, but on node a this is not possible.
Consider the following program fragment:

 IF c THEN d ELSE e END

This program fragment is modelled by the flowgraph D1 in Figure 4.2.
c

ed

Figure 4.2 Flowgraph D1 of IF c THEN d ELSE e END

Modelling Software for Structure Metrics 47

Suppose we want to replace b in the program fragment WHILE a DO b END
by IF c THEN d ELSE e END, resulting in the program fragment:

 WHILE a DO
 IF c THEN d ELSE e END
 END

Then, nesting the flowgraph D1 (Figure 4.2) on node b of flowgraph D2 (Figure
4.1) gives the flowgraph in Figure 4.3, denoted as D2(D1).

ed

a

c

Figure 4.3 Flowgraph of WHILE a DO IF c THEN d ELSE e END END

Suppose we want to replace a in WHILE a DO b END by c OR d.
Assuming a ‘lazy’ OR, the construct c OR d is modelled by the flowgraph D0
which is given in Figure 4.4.

c

d

Figure 4.4 Flowgraph D0 of c OR d

Now it is not possible to obtain the flowgraph of

 WHILE c OR d DO b END

48 Chapter 4

by nesting the flowgraph D0 in Figure 4.4 on node a of the flowgraph D2 in
Figure 4.1. Instead, the flowgraph for this program, which is given in Figure
4.5, is a prime flowgraph to be called X1.

d

b

c

Figure 4.5 Flowgraph X1 of WHILE c OR d DO b END

So, in this case the structure of the abstract program is not reflected by the
structure of the corresponding flowgraph. In order to solve this problem, we
will define the mapping from programs onto structure graphs, which are flow-
graphs whose start node has outdegree 1.

This chapter is organised as follows. In section 4.2, we will recapitulate the
theory of flowgraphs and flowgraph decomposition. In section 4.3 we will ex-
plain the notion of structure graph. Structure graphs can, analogous to flow-
graphs, be uniquely decomposed into a hierarchy of prime structure graphs.
Programs in an imperative language can be modelled by means of structure
graphs in such a way that the structure of a program is always reflected by the
structure of the corresponding structure graph. Structure metrics for these
graphs are discussed in section 4.4. In the last section we consider two small
example languages; we show how programs in these languages are mapped
onto structure graphs.9

9 This mapping has been implemented, and also the decomposition algorithm for the structure
graphs, in the functional programming language Miranda.

Modelling Software for Structure Metrics 49

4.2 Flowgraphs

In this section, we briefly recapitulate the theory of flowgraphs and their de-
composition (Fenton, 1991; Fenton & Kaposi, 1987). We start with the defini-
tion of a flowgraph:

Definition A flowgraph is a 3-tuple (G,a,z) where G is a directed graph, and a
and z are nodes of G, called start node and stop node respectively, such that:
• For each node x of G there is a path in G from a to z via x.
• The outdegree of z is 0.

The next two definitions specify operations on flowgraphs:

Definition If F1=(G1,a1,z1) and F2=(G2,a2,z2) are flowgraphs then the sequence
F1;F2 of F1 and F2 is the flowgraph (G1;G2,a1,z2) where G1;G2 is the directed
graph which is obtained from the union of G1 and G2 by identifying the nodes
z1 and a2.

Definition If F1=(G1,a1,z1) and F2=(G2,a2,z2) are flowgraphs and x is a node of
G1 with outdegree 1 (called a procedure node) then the nesting F1(F2 on x) is
the flowgraph (G1(G2 on x),a1,z1) where G1(G2 on x) is the directed graph which
is obtained from the union of G1 and G2 by deleting the edge whose source is x,
identifying x and a2, and identifying z2 and the successor of x.

Definition The flowgraph F2=(G2,a2,z2) is a subflowgraph of the flowgraph
F1=(G1,a1,z1) if G2 is a subgraph of G1 and z2 is the source of all edges from G2
to G1\G2.

Definition The subflowgraph F2=(G2,a2,z2) of the flowgraph F1=(G1,a1,z1) is a
one-entry subflowgraph if
• the target of each edge from (G1\G2) ∪ {z2} to G2 is either a2 or z2, and
• if a1 belongs to G2 then a1=a2 or a1=z2

Definition The subflowgraph F2=(G2,a2,z2) of the flowgraph F1=(G1,a1,z1) is a
proper subflowgraph if G1≠G2 and F2 is not one of the two trivial flowgraphs.
Here, the two trivial flowgraphs are the flowgraph consisting of one node only
(P0), and the flowgraph consisting of two nodes and one edge (P1).

50 Chapter 4

Definition The proper one-entry subflowgraph F2 of the flowgraph F1 is a
maximal one-entry subflowgraph of F1 if there exists no proper one-entry sub-
flowgraph F3 of F1 such that F2 is a proper one-entry subflowgraph of F3.

The next two theorems show a way in which each flowgraph can be decom-
posed uniquely into a hierarchy of indecomposable flowgraphs (primes).

Theorem Each flowgraph F can be written uniquely as a sequence of nonse-
quential flowgraphs F1;F2;..;Fn.

Theorem Each nonsequential flowgraph F can be written uniquely as a si-
multaneous nesting F0(F1 on x1,F2 on x2,...,Fn on xn), where F1,F2,...,Fn are the
maximal proper one-entry subflowgraphs of F0. Moreover, F0 is a prime.

The nesting - in the last theorem - is usually denoted as F0(F1, F2,...,Fn), in
which is abstracted from the nodes onto which the flowgraphs are nested.

An algorithm for the decomposition of flowgraphs is given in Bache & Wilson
(1988). Note that, according to our definition of one-entry subflowgraphs, a re-
quirement for (G2,a2,z2) to be a one-entry subflowgraph of (G1,a1,z1) is the ab-
sence of edges in G1 from z2 to nodes in G2 other than a2. This requirement is
absent in the definitions in Fenton (1991), Fenton & Kaposi (1987) and Bache
& Wilson (1988). Without this requirement, testing for the one-entry property
in the algorithms above is not sufficient.

4.3 Structure graphs

As shown in the introduction, a drawback of the traditional way of modelling
software by means of flowgraphs is that no refinement of conditions can be
modelled, since conditions do not correspond to procedure nodes, and the op-
eration of nesting is defined for procedure nodes only. The solution of this
problem will lead to the introduction of a subset of flowgraphs, called structure
graphs, as will be explained below.

As a first step towards a solution of this problem, we propose to model soft-
ware by flowgraphs in such a way that each atomic action corresponds to a
procedure node. For instance, IF c THEN d ELSE e END is modelled by the
flowgraph of Figure 4.6, to be called structure graph D1' .

Modelling Software for Structure Metrics 51

c

ed

Figure 4.6 Structure graph D1' of IF c THEN d ELSE e END

Similarly, WHILE a DO b END is modelled by the flowgraph of Figure 4.7, to
be called structure graph D2' .

b

a

Figure 4.7 Structure graph D2' of WHILE a DO b END

Note that there are nodes with outdegree > 1 which do not correspond to
atomic actions. After Whitty (1988), we call these nodes select nodes.

For each program, such a new representation as a flowgraph can be ob-
tained by the old one by replacing in the former each node with outdegree > 1
by a procedure node with an edge to a new selection node. Unfortunately, this
does not solve our problem. The program WHILE c OR d DO b END would
correspond to the graph of Figure 4.8:

52 Chapter 4

b

c

d

Figure 4.8 Tentative structure graph of WHILE c OR d DO b END

This is not what we want. Let us consider the flowgraph for c OR d in our
new model, to be called structure graph D0' ,which is given in Figure 4.9:

d

c

Figure 4.9 Structure graph D0' of c OR d

We want the structure graph for WHILE c OR d DO b END to be the struc-
ture graph D0' for c OR d (Figure 4.9) nested on node a of the structure graph
D2' for WHILE a DO b END (Figure 4.7). This structure graph is shown in
Figure 4.10.

Modelling Software for Structure Metrics 53

b

c

d

Figure 4.10 Structure graph of WHILE c OR d DO b END

In general, as the second step to the solution of our problem, we propose to as-
sign graphs which can be interpreted as control flowgraphs only to ‘basic’ pro-
grams, and to assign to other programs graphs which are obtained from the
graphs of their subprograms, using sequencing and nesting. In section 4.5 we
illustrate this for two example languages.

We are left with one major problem. The graphs assigned to ‘basic’ programs
should be primes. However, the graph for IF a THEN b ELSE c END, which
is given in Figure 4.6, is not a prime; it is a sequence P1;D1 of the prime flow-
graphs P1 and D1. The same is true for the graph in Figure 4.9, which corre-
sponds to the basic program c OR d , which is the sequence P1;D0. The third
(and final) step to the solution of our problem is therefore to consider only a
subset of the flowgraphs, called structure graphs. A structure graph is a flow-
graph whose start node is a procedure node.

This choice is justified by the observation that programs should start with an
action, not with a selection. Note that the flowgraphs in Figure 4.6 and Figure
4.9 are structure graphs which cannot be decomposed into smaller structure
graphs, i.e. they are prime structure graphs, respectively D1' and D0'.

The theory of structure graphs is, fortunately, analogous to the theory of
flowgraphs. The operations of sequencing and nesting are well-defined on
structure graphs, and structure graphs can be decomposed uniquely into a hi-

54 Chapter 4

erarchy of prime structure graphs. An algorithm for the decomposition of
structure graphs may be obtained from an algorithm for the decomposition of
flowgraphs in a straightforward way. However, the result of the decomposition
of a structure graph into prime structure graphs can be quite different from
the result of the decomposition of the same graph into the traditional prime
flowgraphs. Consider for instance the graph in Figure 4.11.

Figure 4.11 Example graph

As a traditional flowgraph, its decomposition is a sequence of three prime
flowgraphs: P1; D1'; D1'. As a structure graph, its decomposition is a nesting of
the prime structure graph D1' on the prime structure graph D1': i.e., D1'(D1').

4.4 Structure metrics

The prime decomposition of flowgraphs has been used for the definition of the
important class of structure metrics (Fenton, 1991). These metrics can be de-
scribed completely in terms of the primes and the operations of sequencing and
nesting. A structure metric m is determined uniquely by the following three
characteristics:
1. m(F) for each prime F
2. a function gn such that m(F1;...;Fn) = gn(m(F1),...,m(Fn))
3. a function hF such that m(F(F1,...,Fn)) = hF(m(F1),...,m(Fn)) for each prime F.

Modelling Software for Structure Metrics 55

A structure metric with these properties is called a hierarchical metric. More-
over, if the nesting function h is independent of F then the metric is called a
recursive metric. So, the class of recursive metrics is contained in the class of
hierarchical metrics.

For example, the structure metric depth of nesting md is defined as follows
(Fenton, 1991):

1. md(P1) = 0
 for each prime F ≠ P1: md(F) = 1
2. md(F1;...;Fn) = max(md(F1),...,md(Fn))
3. md(F0(F1,...,Fn)) = 1 + max(md(F1),...,md(Fn))

For structure graphs, structure metrics can be defined in the same way. It
should be kept in mind that the decomposition for structure graphs, differs
from flowgraphs as used in the structure metrics given above, as discussed in
the previous section. The metric values need not be the same in both ap-
proaches. E.g., the depth of nesting for WHILE c OR d DO b END in the tra-
ditional modelling (see Figure 4.5) is 1 and in the new model (see Figure 4.10)
the depth of nesting is 2, i.e. the depth of D2'(D0').

4.5 Two small languages

In this section we consider the mapping from programs of some small
languages to structure graphs. We do not consider the mapping from programs
to abstract programs; our languages themselves consist of abstract programs.
Our first language is given in Table 4.1:

<program> = PROGRAM <name> ; BEGIN <body> END <name> .
<body> = <expression> | <expression> ; <body>
<expression> = S | WHILE <expression> DO <body> END |
 IF <expression> THEN <body> ELSE <body> END
<name> = <letter> | <letter> <name>
<letter> = 'a' | | 'z'

 Table 4.1 Sample programming language

A program consists of a body, which equals a sequence of expressions. There
are three kinds of expressions: the WHILE expression, the IF expression, and
the expression S. This last expression corresponds to atomic actions.

The mapping from programs to structure graphs is defined by induction.
The structure graph of a program is the structure graph of its body. The struc-
ture graph of a body is the sequence of the structure graphs of its expressions.

56 Chapter 4

The structure graph of the expression S is the structure graph with two nodes
and one edge. The structure graphs of a IF expression and an WHILE expres-
sion are the structure graphs of Figure 4.6 and Figure 4.7 respectively, on
which the structure graphs of their subexpressions are properly nested.

It is easily shown that each expression is mapped onto a nonsequential
structure graph. From this it follows that the decomposition tree of the struc-
ture graph of each program can be obtained from the parse tree of the pro-
gram, and vice versa. So, for this language there is no need to construct and
decompose a structure graph in order to obtain the structure of a program; the
structure is completely determined by the syntax of the program. This remains
true when we add more ‘structured’ expressions, like REPEAT-loops, and OR
and AND expressions.

Our second example language is obtained from the first one by adding labelled
expressions and a GOTO expression (see Table 4.2):

<program> = PROGRAM <name> ; BEGIN <body> END <name> .
<body> = <expression> | <expression> ; <body> |
 <label> : <expression> |
 <label> : <expression> ; <body>
<expression> = S | WHILE <expression> DO <body> END |
 IF <expression> THEN <body> ELSE <body> END |
 GOTO <label>
<name> = <letter> | <letter> <name>
<label> = <digit> | <digit> <label>
<letter> = 'a' | | 'z'
<digit> = '0' | | '9'

 Table 4.2 Extended sample programming language

Since we will not assign a structure graph to a GOTO expression, the mapping
from programs to structure graphs cannot be defined by induction in this case.
Informally, the structure graph corresponding to a program in this language is
obtained by first replacing the GOTO expressions by S and constructing the
structure graph as in the first example language (forgetting about the labels)
and then removing the GOTO-nodes by redirecting the incoming arcs for each
GOTO-node to the start node of the structure graph corresponding to the ex-
pression with the appropriate label. More formally we proceed as follows.

Definition A generalised structure graph is a 7-tuple consisting of
• a set N, the elements of which are called nodes,
• a node a, called the start node,
• a node z, called the stop node,

Modelling Software for Structure Metrics 57

• a set E of ordered pairs of nodes, the elements of which are called edges,
• a set L, the elements of which are called labels,
• a set B of ordered pairs of a label and a node, the elements of which are

called bindings,
• a set D of ordered pairs of a node and a label, the elements of which are

called dangling edges

A structure graph can be seen as a generalised structure graph for which the
sets L, B and D are empty. Sequencing and nesting are defined for generalised
structure graphs just as for structure graphs (if dangling edges are treated as
‘real’ edges).

A mapping from programs to generalised structure graphs can be defined
by induction as follows.

The generalised structure graph of a program is the generalised structure
graph of its body. The generalised structure graph of a body is the sequence of
the generalised structure graphs of its (labelled) expressions. The generalised
structure graph of a labelled expression is the generalised structure graph of
the expression to which a binding is added consisting of the label and the start
node. The generalised structure graph of the expression S, of a WHILE expres-
sion and of an IF expression are the structure graphs as in the previous exam-
ple, on which the generalised structure graphs of their subexpressions are
properly nested. Finally, the generalised structure graph of a GOTO expression
consists of two nodes, the start node and the stop node, and a dangling edge
consisting of the start node and the label.

Having obtained a generalised structure graph for a program, its dangling
edges can be replaced by ‘real’ edges; their target nodes can be obtained from
the set of bindings. If no binding for a label is found, the program is not well-
formed. If for all labels bindings are found, either the result is a structure
graph or the program contains unreachable code. So we have defined a map-
ping from well-formed programs to structure graphs, where the well-formed
programs are programs without missing labels and without unreachable code.
The procedure nodes of the structure graph correspond to basic actions and to
GOTO statements. The nodes corresponding to GOTO statements are indirection
nodes, and can be removed. Note that the syntax of our language allows a
GOTO expression as the conditional of a WHILE or an IF expression, but that
this is impossible for a well-formed program.

As an example, consider the rather unusual10 program given in Table 4.3:

10 For example in Pascal, such a program is not allowed according to the ISO standard

58 Chapter 4

 PROGRAM example;
 BEGIN
 IF S1 THEN GOTO 1 ELSE S2 END;
 IF S3 THEN 1:S4 ELSE S5 END
 END example.

 Table 4.3 Example program

The structure graph and the (traditional) flowgraph of this program is given in
Figure 4.12.

4

1

2

3

54

2

3

5

1

Figure 4.12 Flowgraph (left) and structure graph (right) of the example
program in Table 4.3

Modelling Software for Structure Metrics 59

The occurrences of S in the example program have been given indices; these
indices are used in the graphs to show the correspondence between atomic ac-
tions and graph nodes. The flowgraph of Figure 4.12 is a prime flowgraph; the
structure graph of Figure 4.12 however is not a prime structure graph: it con-
tains as substructure the sequence of S2 and S3. This is an example where our
structure graph approach reveals a substructure which remained unnoticed in
the traditional flowgraph approach. It is also interesting to note that this se-
quential substructure was not explicitly denoted as a sequence in the program.

4.6 Conclusion

We have introduced the modelling of programs in terms of structure graphs,
which are flowgraphs whose start node is a procedure node. Structure graphs
can, just as flowgraphs, be uniquely decomposed into a hierarchy of indecom-
posable prime structures. It has been shown that structure graphs are better
suited than flowgraphs to model the structure of programs in an imperative
language. We have given explicitly the mapping from programs of small exam-
ple languages to structure graphs.

60 Chapter 4

 61

Chapter 5

5. Static Analysis of Functional Programs 11

In this chapter, the static analysis of programs in the functional programming
language Miranda is described based on two graph models. A new control-flow
graph model of Miranda definitions is presented, and a model with four classes
of callgraphs. Standard software metrics are applicable to these models. A Mi-
randa front end for Prometrix12, a tool for the automated analysis of flow-
graphs and callgraphs, has been developed. This front end produces the flow-
graph and callgraph representations of Miranda programs. Some features of
the metric analyser are illustrated with an example program. The tool pro-
vides a promising access to standard metrics on functional programs.

5.1 Introduction

Static analysis of programs has the potential to contribute to the control of
quality of software. Internal attributes, such as structural properties, meas-
ured in the static analysis, are claimed to have a correlation with external at-
tributes, such as comprehensibility, maintainability and testability. Tradition-
ally, static analysis and related tools focuses mainly on programs written in
imperative programming languages (Fenton, 1991). In this chapter, two mod-
els for static analysis, control-flow graphs and callgraphs, will be elaborated
for the analysis of programs written in the functional programming language
Miranda (Turner, 1986) with respect to the comprehensibility of programs (Da-
vies, 1993). The measurement and validation of internal attributes on size and
structure based on these models are addressed. The validation of the models
with respect to external attributes are subject of a separate study (van den
Berg & van den Broek, 1995b; see Chapter 9 of this thesis).

11 K.G.van den Berg & P.M. van den Broek (1995). Static Analysis of Functional Programs, In-
formation and Software Technology, 37(4), 213-224.
12 Prometrix is a product of Infometrix Software

62 Chapter 5

Callgraphs are used to model dependencies between program constructs,
such as functions or modules. Callgraphs are related with hierarchy charts as
used in several structured design methods (Yourdon & Constantine, 1979).
They capture the dependencies of objects in the program at different levels of
abstraction. E.g., one may define a callgraph for dependencies between func-
tions within a module; or dependencies between modules, and so on. The root
node of the callgraph corresponds to the highest level object. Callgraphs are
used in static program analysers (Bache, 1990). Callgraphs for Prolog pro-
grams have been given by Fenton & Kaposi (1989). A callgraph model for func-
tional programs in Miranda has been described by Harrison (1993). In this
chapter, four classes of callgraphs will be introduced.

There are different aspects of control-flow in functional programming. One
important aspect is determined by the reduction strategy for the evaluation of
expressions. In Miranda, the functional programming language studied here,
this strategy is normal order reduction, also called lazy evaluation (Bird &
Wadler, 1988). Another aspect of control-flow is related to the syntactical
structure of the function definitions in programs. This aspect, that usually gets
little attention, will be addressed in this chapter.

stop node

start node

D

4

7

2 5 6

4

7

5

2

1

D 1 (D 0)1D

1

3

0

b c d

D 0

D 1

e

P

1

2

1

a

6

3

Figure 5.1 Elementary flowgraphs and decomposition tree

Flowgraphs are used for the modelling of control-flow in imperative programs
(Fenton, 1991). The nodes in the directed graphs correspond to statements in
the programs, whereas the edges from one node to the other indicate a flow of
control between corresponding statements. The stop node in a flowgraph has
outdegree zero, and every node lies on some path from the start node to the
stop node. The nodes with outdegree equal to 1 are called procedure nodes; all
other nodes are termed predicate nodes. E.g., an elementary action is modelled
as flowgraph in Figure 5.1a (referred to as P1); the if-then construct in a pro-
gram is modelled as flowgraph in Figure 5.1b (referred to as D0); the if-then-
else construct is modelled as flowgraph in Figure 5.1c (referred to as D1).

Static Analysis of Functional Programs 63

Flowgraphs can be concatenated (sequencing) to a new flowgraph; and flow-
graphs can be nested on another. An example of nesting D0 onto D1 at node 6
in Figure 5.1c, is given in Figure 5.1d. This is denoted as D1(D0), in which is
abstracted from the node onto which is nested. Associated with any flowgraph
is a decomposition tree which describes how the flowgraph is built by sequenc-
ing and nesting elementary flowgraphs, such as D0 and D1. The decomposition
tree of the flowgraph in Figure 5.1d is depicted in Figure 5.1e.

In order to quantify internal attributes of software, metrics have been de-
fined on flowgraphs, decomposition trees and callgraphs (Fenton, 1991). These
metrics can be divided into two main classes: size metrics (e.g. number of
nodes and edges) and structure metrics (e.g. nesting depth and width, based on
a decomposition in primitive components). Several of the standard metrics will
be used on the models discussed in this chapter.

This chapter is organised as follows. First, more details about programs in
the functional programming language Miranda will be given by explaining an
example program. Furthermore, the modelling of the control-flow and depend-
encies in the callgraph for functional programs will be elaborated on. The ac-
tual data of some software metrics for the example program will be described.
The final sections discuss the Miranda analyser and some results obtained
with this approach.

5.2 Functional programs

In this section, some characteristics of programs in the functional language
Miranda (Turner, 1986; Bird & Wadler, 1988) will be described with an exam-
ple program.

5.2.1 Example program

In Table 5.1, an example program, usually called a script, is given. The line
numbers are added for further explanation.
The function main (lines 4-7) returns the sum of the j-th through k-th complex
number in list, in which each complex number is derived from a list of (inte-
ger or real) numbers as follows: an empty list will give complex number 0 +
0 i, a list with one number x will give complex number x + 0 i, and a list
with two or more numbers x,y,... will give complex number x + y i. In-
formally, the function main can be specified as follows:

 main j k [c1,...,cj,...,ck,...,cn] = cj + ... + ck

For the given test data (line 10) and with j = 1 and k = 4, the (top) expres-
sion main 1 4 test evaluates to the string "13 + 5 i".

64 Chapter 5

|| file complex.m 1
|| main j k list is the sum of the j-th through k-th 2
|| complex number in list 3
main :: num -> num -> [[num]] -> [char] 4
main j k list 5
 = showct (sumlist sublist) 6
 where sublist = take (k-j+1) (drop (j-1) list) 7
 8
|| test data 9
test = [[4,5],[1,0],[8],[],[2,3,4],[7,8]] 10
 11
|| specification complex numbers 12
|| re(rect(a,b)) = a 13
|| im(rect(a,b)) = b 14
 15
|| type definition complex numbers 16
abstype ct 17
with 18
 rect :: (num,num) -> ct 19
 re :: ct -> num 20
 im :: ct -> num 21
 showct :: ct -> [char] 22
 23
|| implementation complex numbers 24
ct == [num] 25
rect (a,b) = [a,b] 26
re [a,b] = a 27
im [a,b] = b 28
showct z = x, if im z = 0 29
 = y ++ " i", if re z = 0 30
 = x ++ " + " ++ y ++ " i", otherwise 31
 where (x,y) = (shownum(re z), shownum(im z)) 32
 33
|| derived operations complex numbers 34
plus :: ct -> ct -> ct 35
c1 $plus c2 = rect (re c1 + re c2, im c1 + im c2) 36
 37
|| sum of complex numbers in list 38
|| each complex number is derived from a list of numbers 39
sumlist :: [[num]] -> ct 40
sumlist [] = rect(0,0) 41
sumlist ([x1,x2]:xss)= c $plus sumlist xss 42
 where c = rect(x1,x2) 43
sumlist (xs:xss) = sumlist xss, if #xs = 0 44
 = c $plus sumlist xss, if #xs = 1 45
 = sumlist ((take 2 xs):xss),otherwise 46
 where c = rect(x,0) 47
 where x = hd xs 48

Table 5.1 Example Miranda program

Static Analysis of Functional Programs 65

For complex numbers, an abstract data type is given: the specification as
comment (lines 12-14) and the type definition of the base operations (lines 17-
22). Any text on a line after two vertical bars is comment (e.g. lines 1-3). In the
implementation (lines 26-32) a complex number is represented by a list of
numbers, given by the type synonym symbol == (line 25). The derived opera-
tion plus (line 36) is defined in infix notation (name of the function with a $-
prefix). With the reserved word where the local definitions are indicated (e.g.
line 7). On line 32, x and y are defined simultaneously in a so called compound
definition. The other functions in this script (take, drop, shownum, hd, ++ and
#) are Miranda library functions.

For each function the type of the function is provided: the name of the func-
tion followed by a double colon and a type expression (e.g. line 4). The right ar-
row → in the type expression denotes a function type.

The example program could have been programmed more proficiently, es-
pecially the function sumlist, and with a more distinct specification of the
functions. However, this rather inexpert implementation will be used to exem-
plify several modelling issues.

5.2.2 Structure of function definitions

A script consists of a number of definitions. A definition consists of a number
of clauses. A clause consists of a number of cases, possibly followed by a script
with the local definitions of that clause. This structure will be illustrated with
the function sumlist (see Table 5.2).

 sumlist [] = rect(0,0) 41

 sumlist ([x1,x2]:xss) = c $plus sumlist xss 42

 where c = rect(x1,x2) 43

 sumlist (xs:xss) = sumlist xss, if #xs = 0 44

 = c $plus sumlist xss, if #xs = 1 45

 = sumlist ((take 2 xs) : xss), otherwise 46

 where c = rect(x,0) 47

 where x = hd xs 48

Table 5.2 Structure of the definition sumlist

66 Chapter 5

The definition sumlist consists of three clauses (starting at line 41, 42 and 44).
The first clause consists of one case (line 41). The second clause consists of one
case (line 42), followed by a local script with the definition of c (line 43: single
clause, single case). The third clause consists of three cases (lines 44-46), fol-
lowed by a local script with the definition of c (line 47: single clause, single
case with a local script with the definition of x at line 48).

5.3 Control-flow model

The control-flow, as reflected in the syntactic structure of the function defini-
tions, is determined by the order of the clauses and the patterns, and the order
of the cases and the guards. A detailed account on pattern-matching and
guards in Miranda is given by Peyton Jones and Wadler (Peyton Jones, 1987).
From other aspects of the control-flow in the actual evaluation of expressions,
such as laziness (Bird & Wadler, 1988), will be abstracted from.

5.3.1 Control-flow in function definitions

The clauses are selected by matching the patterns in the arguments. For ex-
ample, the first pattern in the function sumlist (see Table 5.1) is an empty list
[] (line 41); the second pattern ([x1,x2]:xss) is a non-empty list with a head-
element consisting of a list with two elements (line 42). Here, there is a pat-
tern within another pattern. The pattern (xs:xss) in the third clause (line 44) is
again a non-empty list, but more general than the pattern in the previous
clause: any head-element will match. The pattern in the first clause will be
checked first, then the second, and so on. Only if all patterns in the clauses are
disjoint and exhaustive, the clauses can be written in any order. There are pat-
terns which always match, e.g. the pattern z in the definition of showct (line
29). If no pattern succeeds there is an error in the definition.

If a clause is selected, the cases in a clause are selected by the guards of
each case. There are no guards in the first and second clause. The first guard
in the third clause (line 44) is the test (#xs=0), the second guard is (#xs=1), the
last guard (line 46) is 'otherwise' which will succeed always. The topmost
guard will be checked first, then the second, and so on. E.g., in the second case
of the function showct (line 30), it is assumed that the first guard resulted in
the value False, so that in this case (im z ≠ 0). Only if all guards are disjoint
and exhaustive, the cases can be written in any order. If no guard succeeds,
which may happen if there is no 'otherwise' guard, in Miranda the following

Static Analysis of Functional Programs 67

function clause will be checked 13. If there is no other clause there will be a
program error.

5.3.2 Modelling control-flow in function definitions

In the mapping of a program to a model, one has to keep in mind for which
purpose the model will be used. A model for the testability of a program could
be different from a model for the comprehensibility (Shepperd & Ince, 1993).
In the subsequent modelling of the control-flow, internal attributes relevant to
the external attribute comprehensibility of functional programs have to be cap-
tured. Eventually, this modelling has to be validated.

For the static analysis, arguments in a function clause with patterns that
may fail will be modelled as one predicate node with outdegree 2. Patterns
that never fail consists of just one or more distinct identifiers, e.g. the pattern
z in the definition of showct (line 29). A pattern that always succeeds will not
be modelled as a node in the flowgraph.
In Miranda, common used patterns in function definitions that may fail are:
• patterns with a constant: real, integer, character, string
• patterns with constructors: user defined algebraic constructors, or standard

constructors for a list (line 27,28 and in line 41, 42 of the function sumlist)
• patterns with the + operator, e.g. n+1 where n is an integer
• patterns with the list-constructor : , such as in (xs:xss) in line 44
• multiple occurrences of variables: two or more times the same identifier in

the patterns
Multiple patterns, such as in the second clause of sumlist (line 42) or patterns
in two or more arguments, will be modelled just as one predicate node. More-
over, we will abstract from the actual content of patterns. E.g., the two pat-
terns [] and (xs:xss) cover all possible list arguments (the function is total).
However, both patterns will be modelled with a predicate node, as if they were
independent.

Guards will be modelled as predicate nodes with outdegree 2. Again, we
will abstract from the actual content of the guard. E.g., a guard with just the
boolean value True, or the boolean expression (1=1), will be modelled as a
predicate node. Composite guards are modelled just as one predicate node. The
guard ‘otherwise’ will not be modelled with a node in the flowgraph.

Expressions other than guards on the right hand side of the function defini-
tion will be modelled just as one procedure node. In the modelling, we will ab-

13 In some implementations of functional languages, the program will not proceed with the follow-
ing clause and a program error will be reported

68 Chapter 5

stract from the actual content of these expressions, which be may very simple
(line 27) or more complicated (line 7).

In this flowgraph modelling of functional programs, there is no recursion
and there are no iterative constructs, such as the while-do structure in an im-
perative language. In terms of prime flowgraphs, there are no D2 (while-do)
and D3 (repeat-until) structures. Furthermore, there is no sequencing of flow-
graphs in this model.

[]

([x1,x2]:xss)

#xs=0

patterns guards expressions stop

T

T

T

F

F

F

F

T

T(xs:xss)

#xs=1

F

e1

e2

e3

e4

e5

e1 = rect(0,0)

e2 = c $plus sumlist xss

e3 = sumlist xss

e4 = c $plus sumlist xss

e5 = sumlist ((take 2 xs):xss)

Figure 5.2 Annotated control-flow graph of the function sumlist

5.3.3 Control-flow graph and decomposition tree

From the modelling discussed in the previous section, the control-flow graph
for the function sumlist is given in Figure 5.2. The four vertical lines indicate
the kind of nodes in the flowgraph: predicate nodes (outdegree 2) for patterns
and guards, procedure nodes (outdegree 1) for the expressions, and finally the
stop node (outdegree 0). For the predicate nodes, the True (T) and False (F)

Static Analysis of Functional Programs 69

branches are indicated. Note that the lower (False) branch starting at the pat-
tern (xs:xss) is infeasible because either the pattern [] or the pattern (xs:xss)
will succeed: these two patterns are exhaustive. However, as described in the
previous section, in this model will be abstracted from the actual content of the
patterns, and the pattern (xs:xss) will be modelled as a predicate node with
outdegree 2.

The decomposition tree of flowgraph can be derived by a hierarchical de-
composition in prime flowgraphs (Fenton, 1991). The decomposition tree of the
function sumlist is given by:
 D1(D1(D0(D1(D1))))

and can be depicted as a tree without branches (cf. Figure 5.1e).

There are simple function definitions resulting in flowgraphs that are not D-
structured (i.e. containing other than D0, D1, and P1-primes). Consider for ex-
ample the following function f (the function funnyLastElt in Peyton Jones,
1987: p 58):

The function f returns the last element of its argument list, except that if a
negative element is encountered then it is returned instead.

 f (x:xs) = x, if x < 0 (1)
 f (x:[]) = x (2)
 f (x:xs) = f xs (3)

The function f is a partial function, defined for non-empty lists only. The
clause numbers are added. The annotated flowgraph of this function definition
is given in Figure 5.3a.

The decomposition of this flowgraph is X1(D1(D0)), where X1 is the prime
given in Figure 5.3b. In imperative languages, this prime is associated with a
lazy boolean AND-expression in a selection (cf. Fenton & Kaposi, 1987).

Furthermore, from this example it can be shown that guards interact with
pattern matching and the order of the clauses. There are 6 permutations of the
order of the three clauses in the function f. Only two of them, (1,2,3) and
(2,1,3), give a definition which satisfies the specification.

An alternative definition of the function f with the same functionality is the
following function f ' :

 f'(x:xs) = x , if x < 0 \/ xs = []
 = f' xs, otherwise

70 Chapter 5

The flowgraph belonging to this function f ' is D-structured; its decomposition
is D0(D1). The composite guard, in this example consisting of a lazy boolean or-
expression, is modelled as one predicate node, as has been described in the
previous section.

x<0

patterns guards expressions stop

TF

F
T

Tx:xs

x:[]

F

x:xs

x

x

f xs

x<0

patterns guards expressions stop

TF

Tx:xs

clause

F

x2 and 3

a. flowgraph of function f b. prime X1 in flowgraph of function f

F

T

Figure 5.3 Annotated control-flow graph of the function f with prime X1

Whether this alternative definition, with a D-structured flowgraph decom-
position, should be preferred, e.g. with respect to the external attribute com-
prehensibility, to the first definition with the X-prime in its flowgraph decom-
position, has to be established in a separate validation study (van den Berg &
van den Broek, 1995b; see Chapter 9 of this thesis).

5.3.4 Flowgraph metrics

There are a large number of metrics defined on flowgraphs and decomposition
trees (Fenton, 1991). A selection of flowgraph metrics for the function sumlist
is given in Table 5.3. A short description of the metrics will be given. The size
metrics give the number of nodes and edges in the flowgraph. The local struc-
ture metrics give the occurrences and sizes of the primes in the decomposition.
The overall structure metrics give some classical measures on flowgraphs: e.g.
the cyclomatic complexity number of McCabe. Testability metrics can be com-
puted from the decomposition tree provided that the values can be computed
for the primes as well as for nesting and sequencing (Fenton, 1991). In tools,

Static Analysis of Functional Programs 71

like Qualms(1988) and Prometrix(1993), the prime decomposition is used in
the computation of the testability metrics.

Metric Value
Size Metrics
– Number of nodes 11
– Number of edges 15
Local Structure Metrics
– Is D-structured 1
– Occurrences of D0 1
– Occurrences of D1 4
– Occurrences of exotic primes 0
– Biggest prime 4
– Depth of nesting 5
Overall Structure Metrics
– McCabe’s metric 6
– Prather’s metric 32
– Basili-Hutchens SynC 12.21
Testability Metrics
– Statement testability 5
– Branch testability 6

Table 5.3 Flowgraph metrics for the function sumlist

In the modelling of functional programs, and the special situation with only P1,
D0 (if-then) and D1 (if-then-else) structures and no sequencing, the following
testability metrics will give equal values: all-path testing, visit-each-loop path
testing, simple path testing and branch testing. Therefore, only one of these
metrics, branch testability, is included in the selected metrics of Table 5.3. If
'exotic' prime structures are encountered in the flowgraph, here primes other
than D0, D1 and P1, the testability metrics for these primes have to be added.

The testability metrics give the number of test cases required in each of the
testing strategies. E.g., branch testing requires that each edge in the flow-
graph be visited at least once; for the function sumlist a minimum of 6 test
cases is required. Statement testing requires that each node in the flowgraph
be visited at least once. The test cases can directly be derived from the flow-
graph (see Table 5.4). Tests 1-5 are the statement tests; tests 1-6 are the
branch tests. However, from the list-patterns it can be concluded that the con-
ditions for test 6 can never be met (a list-argument will always match one of
the patterns [] or (xs:xss)). In general, infeasible paths can be introduced in the
modelling phase as has been described in the previous section.

72 Chapter 5

 patterns and guards
test expression line [] [x1,x2]

: xss
xs:xss #xs=0 #xs=1

1 rect(0,0) 41 true - - - -
2 c $plus sumlist xss 42 false true - - -
3 sumlist xss 44 false false true true -
4 c $plus sumlist xss 45 false false true false true
5 sumlist ((take 2 xs):xss) 46 false false true false false
6 - - false false false - -

Table 5.4 Test cases for the function sumlist

From the analysis of flowgraph and decomposition tree metrics, one may se-
lect functions which surpass certain pre-set threshold values, e.g. on testabil-
ity or size. These functions can be inspected, and if necessary, they can be re-
designed and implemented, resulting in more acceptable metric values. These
threshold values may depend on the type of project in which the programs are
going to be used. Functions which produce exotic primes in their flowgraphs
(not D-structured) can be detected, and subsequent code inspection may reveal
a bad programming style or error prone code.

In the previous section, a simple control flow model for Miranda function
definitions has been described. Application of the model should reveal the need
of further refinements of the model, such as expansion of multiple patterns, of
composite guards and of the other expressions.

5.4 Dependency model

In this section, the callgraph model for Miranda programs is described. Four
classes of functions will be distinguished:
• global functions: functions defined on the top level of the script
• local functions: functions defined within one of the top level functions, or de-

fined within another local function
• primitive functions (or operators): these are in Miranda14 the arithmetic op-

erators (+, -, /, *, ^, div, mod), the boolean operators (&, \/, ~, =, >, <), the
list operators (#, :, ++, --, !), and the function composition operator (.).

• library functions: functions defined in another script or in the standard li-
brary

14 See the Miranda manual

Static Analysis of Functional Programs 73

A callgraph is a directed graph with nodes corresponding to the functions in a
program, and edges corresponding to one function calling another. Multiple
function calls are modelled with one edge in the callgraph. Primitive functions
and calls to these functions are not included in the callgraphs.

In the callgraph, one may select any function as root node: a so called
rooted callgraph is obtained, with all nodes of the callgraph (and corresponding
edges) that are reachable from this root node. In the sequel, such a rooted
callgraph with as root node the function f will be referred to as ‘the callgraph
from root f ’.

The callgraph model has mainly been used for imperative languages, in tools
such as Prometrix(1993). Contrary to for example programs in Pascal, in the
usual Miranda programming practice, there is a heavy reliance on local func-
tions. The number of local functions may easily surpass the number of top
level functions with an order of magnitude. Even in a small example program
as given in Table 5.1, there are local functions which may obscure the top level
dependencies in the program. Therefore, two new classes of callgraphs will be
introduced: the local callgraph and the global callgraph. The customary call-
graph is partitioned in on one hand the global callgraph, with dependencies
between the top level functions, and on the other hand local callgraphs for
each top level function. Furthermore, larger programs are usually split up into
several scripts. The dependencies between these scripts are modelled in the
last class: the include callgraph.

Hence, the following four classes of callgraphs are distinguished:
• general callgraph: the customary graph with calls between the three type of

functions (locals, globals and library functions)
• global callgraph: calls between top level functions and library functions (di-

rectly or indirectly via local functions)
• local callgraph: for each top level function, the calls between this function

and other top level functions, library functions, and local functions which
are in scope of the top level function in the root

• include callgraph: in this callgraph there are no function dependencies, but
calls between scripts (via the include construct, see section 5.4.4)

Each of these classes of callgraphs will be discussed in turn in the following
sections.

74 Chapter 5

5.4.1 General callgraph

In the general callgraph the dependencies between the three classes of func-
tions (local, global and library) are modelled. For example, in the general call-
graph with as root the function main (see Figure 5.5), the global, local and li-
brary functions are:
• top level functions: main, sumlist, showct, plus, rect, im, re
• local functions: sublist defined in main (line 7), x in showct (line 32), y in

showct (line 32), c in the second clause of sumlist (line 43), c in the third
clause of sumlist (line 47), x in the previous mentioned function c (line 48)

• library functions: hd, shownum, take, drop
A function in a general callgraph will be denoted by the plain name of the
function as it appears in the program. It is optional to include or to exclude the
library functions. In Figure 5.5, the library functions are shown.

5.4.2 Global callgraph

In the global callgraph only top level functions are modelled, and dependencies
with other top level functions possibly indirectly via local functions. In the
global callgraph, a top level function will be denoted by the name of the func-
tion and a star-prefix, such as *main; library functions are denoted without
star. In the global callgraph with as root the function main, the functions are:
• top level functions: main, sumlist, showct, plus, rect, im, re
• library functions: hd, shownum, take, drop
As with the general callgraph, it is optional to include or to exclude the library
functions. In Figure 5.4, the library functions are not shown.

Figure 5.4 The global callgraph from root main

Static Analysis of Functional Programs 75

Figure 5.5 The general callgraph from root main

76 Chapter 5

5.4.3 Local callgraph

In the local callgraph of a top level function, the dependencies of this top level
function and the functions within the function definition are modelled. If an-
other top level function is called in the function, the dependencies of that top
level function are not part of the local callgraph. On this local level, these other
top level functions are considered as ‘library’ functions.

In the local callgraph, the full name of the function will be used for the local
function, i.e. the path will be the prefix of the name of the function as used in
the script. The path consists of the global name of the function, the clause
number in which the local function is defined, and so on, separated by a back-
slash. This full name allows the localisation of the clause in which the local
function has been defined. In the local callgraph with as root the function sum-
list (see Figure 5.6), the global, local and library functions are:
• top level functions: sumlist, showct, plus, rect
• local functions: c in the second clause of sumlist (\sumlist@2\c); c in the

third clause of sumlist (\sumlist@3\c); x in the first clause of the function c
in the third clause of sumlist (\sumlist@3\c@1\x)

• library functions: hd, take
Again, it is optional to include or to exclude the library functions. In Figure
5.6, the library functions are shown. The edge from \sumlist to sumlist implies
a recursive call of the top level function in the root.

Figure 5.6 The local callgraph from root sumlist

Static Analysis of Functional Programs 77

5.4.4 Include callgraph

For large scale applications, a program is usually divided into several scripts.
Functions defined in one script may be used in another script if the first script
is included in the latter one. In imperative languages, e.g. Modula-2, this can
be achieved by the IMPORT-declaration. In Miranda this is denoted by the
construct %include, followed by the name of the file which contains the script.
In the previous modelling, a function called from another script is considered
as a library function.

Figure 5.7 The include callgraph from root complex.m

From the include-constructs arises a hierarchy of scripts, which is modelled in
the include callgraph (in the imperative domain called the module import
graph; Pomberger, 1984). One abstracts from the actual calls to functions in
the included script. The example program (given in Table 5.1) could be divided
into four scripts (see Table 5.8): the file compbas.m with the base operations on
complex numbers (line 11-32); the file compaux.m with the derived operations
on complex numbers (line 33-48); the file compdat.m with the test data (line 8-
10). The file complex.m only contains the main application (line 1-7). The in-
clude-constructs are added on lines 1a, 1b, 1c and 33a. The include callgraph
with as root the script complex.m is given in Figure 5.7. The four edges corre-
spond to the four include-constructs in the scripts.

5.4.5 Callgraph metrics

In this section, first some simple size metrics on callgraphs will be considered.
The number of nodes and the number of edges will be used in the comparison
of the general, the global and the local callgraphs. Then, other metrics on call-
graphs will be given.

78 Chapter 5

In Table 5.5 the number of the functions, i.e. the number of nodes in the
graphs, are listed for the callgraphs with as root the function main, and the
callgraphs with as root the function sumlist.

rooted call-
graph

 # global
functions

local
functions

library
functions

functions
total

main 7 6 4 17
*main 7 0 4 11
\main 3 1 2 6
sumlist 5 3 2 10
*sumlist 5 0 2 7
\sumlist 3 3 2 8

Table 5.5 Number of functions in callgraphs from root main and root sumlist

For the four classes of functions described in section 5.4, there are six types of
functions calls in callgraphs:
a. a global function calls another global function
b. a global function calls a local function
c. a global function calls a library function
d. a local function calls a global function
e. a local function calls another local function
f. a local function calls a library function

In Table 5.6 the number of the function calls, including recursive calls15,
are listed for the general callgraph with as root the function main, the global
callgraph from root *main, and the local callgraph from root \main. The same
properties are given for the function sumlist.

calls

root

a.
global-
global

b.
global-
local

c.
global-
library

d.
local-
global

e.
local-
local

f.
local-

library

total

main 10 5 1 6 1 5 28
*main 10 0 5 0 0 0 15
\main 3 1 0 0 0 2 6
sumlist 6 2 1 2 1 1 13
*sumlist 6 0 2 0 0 0 8
\sumlist 3 2 1 2 1 1 10

Table 5.6 Number of function calls for callgraphs from root main and sumlist

15 In Prometrix (see section 5.5.1) recursive calls are not counted

Static Analysis of Functional Programs 79

As can be seen from the number of nodes and edges in these callgraphs, it is
useful, for functional programs with many local functions, to obtain both the
global callgraph and the local callgraphs, besides the customary callgraph.

For callgraphs, some standard metrics have been defined (Fenton, 1991; Pro-
metrix, 1993). For each class of callgraphs introduced in the previous section,
these metrics are applicable. For the general callgraph in Figure 5.5 with as
root the function main, some of these metrics are given in Table 5.7. The defi-
nitions of the metrics are given in Fenton (1991). A short description will be
given below.

Metric Value
Size Metrics
– Number of functions 16 17
– Number of function-function 16 paths 27
– Volume 44
– Average size 2.59
Dimensions
– Maximum depth of calling 4
– Minimum depth of calling 4
– Fenton’s width metric 10
Re-use Metrics
– Reuse 1 metric 0.65
– Reuse 2 metric 0.61
Impurity Metrics
– Yin and Winchester C metric 11
– Fenton’s impurity metric (%) 9.17

Table 5.7 Metrics of the general callgraph from root main

The volume is the sum of all sizes of functions, where each function's size is
the number of nodes in its flowgraph. The minimum depth is the length of the
shortest path from the root node to the farthest node in the graph. The maxi-
mum depth is the longest loop-free path between the root node and any other
node. Fenton's width gives the maximum number of functions on any level. If
no function is called more than once by one other function then there is no re-
use. The callgraph is then a pure tree. The reuse metrics give the proportion
by which the size of the program, in which functions are duplicated that are
called from different places, exceeds the actual program.

16 In the Miranda analyser (see section 5.5.1) the functions are referred to as modules

80 Chapter 5

|| file complex.m 1
%include "compbas" 1a
%include "compaux" 1b
%include "compdat" 1c
|| main j k list is the sum of the j-th through k-th 2
|| complex number in list 3
main :: num -> num -> [[num]] -> [char] 4
main j k list 5
 = showct (sumlist sublist) 6
 where sublist = take (k-j+1) (drop (j-1) list) 7
|| file compdat.m 8
|| test data 9
xs = [[4,5],[1,0],[8],[],[2,3,4],[7,8]] 10
|| file compbas.m 11
|| specification complex numbers 12
|| re(rect(a,b)) = a 13
|| im(rect(a,b)) = b 14
 15
|| type definition complex numbers 16
abstype ct 17
with 18
 rect :: (num,num) -> ct 19
 re :: ct -> num 20
 im :: ct -> num 21
 showct :: ct -> [char] 22
 23
|| implementation complex numbers 24
ct == [num] 25
rect (a,b) = [a,b] 26
re [a,b] = a 27
im [a,b] = b 28
showct z = x, if im z = 0 29
 = y ++ " i", if re z = 0 30
 = x ++ " + " ++ y ++ " i", otherwise 31
 where (x,y) = (shownum(re z), shownum(im z)) 32
|| file compaux.m 33
%include "compbas" 33a
|| derived operations complex numbers 34
plus :: ct -> ct -> ct 35
c1 $plus c2 = rect (re c1 + re c2, im c1 + im c2) 36
 37
|| sum of complex numbers in list 38
|| each complex number is derived from a list of numbers 39
sumlist :: [[num]] -> ct 40
sumlist [] = rect(0,0) 41
sumlist ([x1,x2]:xss)= c $plus sumlist xss 42
 where c = rect(x1,x2) 43
sumlist (xs:xss) = sumlist xss, if #xs = 0 44
 = c $plus sumlist xss, if #xs = 1 45
 = sumlist ((take 2 xs):xss),otherwise 46
 where c = rect(x,0) 47
 where x = hd xs 48

Table 5.8 Example Miranda program with include files

Static Analysis of Functional Programs 81

The Reuse 1 metric is based on the functions having equal weight; the Reuse 2
metric sizes each function according to the number of nodes in the flowgraph17.
The impurity is the amount by which the graph deviates from a pure tree
structure. The Yin and Winchester C metric is the callgraph equivalent of
McCabe's metric and measures the number of calls 'branching in'. Fenton's
impurity metric is a normalised measure, ranging from 0 (when the graph is a
tree) to 100.

As with the control-flow metrics, one can detect functions that exhibit an
extreme value on some metric. E.g., a high value of impurity metrics may point
to a bad design, or if the design is good, to program code that strongly deviates
from the design.

5.5 Miranda analyser

In previous research, an analyser has been constructed to obtain the Halstead
and McCabe-metrics of Pascal programs and Miranda scripts (van den Berg,
1992). The implementation of this analyser was based on an attributed gram-
mar in the Synthesizer Generator (1989). The present Miranda analyser for
the flowgraphs and callgraphs is also devised on an attributed grammar. As
back end of this analyser, the tool Prometrix (1993) is used. This system pro-
vides among others the graphical display of the graphs, the calculation of
standard metrics on these graphs, and statistical analysis of the metrics.
There are front ends available to this tool for several, mainly imperative, pro-
gramming languages. The current Miranda front end, accomplishing the mod-
elling described in the previous sections, is the first one for a functional pro-
gramming language.

5.5.1 Prometrix

Prometrix (1993) is a tool for the analysis of callgraphs and flowgraphs. The
three modes of operation are the following:
• The prepare mode: the front end for the respective programming language is

invoked to produce the representation of the flowgraphs and the callgraph
in an intermediate file (the .f file) for the given source code. From this file
another file is produced with metric values (the .dat file). It is possible to
process a number of scripts jointly (with the names of their files in a batch
file), producing a single intermediate file with the representations of flow-
graphs and callgraphs in all these scripts together.

17 In Prometrix (see section 5.5.1) the number of nodes in library functions is taken to be 0. More
appropriate would be the value 2, the size of a P1 flowgraph, considering a library function as an
elementary action

82 Chapter 5

• The inspect mode: both flowgraphs and callgraphs (from a .f file) can be dis-
played graphically, with their respective metric values. It is optional to dis-
play the library functions. One may select a subgraph, and it is possible to
prune the graph, i.e. to contract dependencies in one node. One may alter-
nate between nodes in the graphs and the related source code (code view-
ing). An example of a flowgraph is given in Figure 5.8, the flowgraph of the
function sumlist (cf. the annotated flowgraph in Figure 5.2).

• The global mode: the metric values can be displayed in different formats (i.e.
histograms, box plots).

For further details on the operation of Prometrix, the reader is referred to the
manual.

Figure 5.8 Flowgraph of the function sumlist from Miranda analyser

5.5.2 Miranda front end

The two main components of the front end are a pre-processor, and an ‘editor’
generated with the Synthesizer Generator (GrammaTech, 1993). The pre-
processor has mainly the following functionality:
• to add semicolons to account for the offside layout rule in Miranda (Turner,

1986)
• to convert ‘literate’ Miranda scripts to ‘normal’ scripts (Turner, 1986)
• to calculate size metrics: the lines of code, with and without comments/white

lines.
The editor derives the flowgraph and callgraph representations as attributes of
the scripts. For each production in the abstract syntax, the attribute rules pro-

Static Analysis of Functional Programs 83

vide the contribution to the representations of the flowgraphs and the call-
graphs. Two files are generated by the editor:
• a file (the .f file) with the standard flowgraph and callgraph representation.

The metrics statistics (in the .dat file) are based on this file
• a file (the .f.f file) with the standard flowgraph representation and the gen-

eral, global, local and include-callgraph representation18. Figure 5.4
toFigure 5.8 are examples of the output from the Miranda analyser.

For the flowgraphs and the general callgraphs, the names of the functions are
encoded with their path: e.g. /sumlist@2/c@1/x. Prometrix will only show the
part after the last slash. For the global callgraphs, the names of the functions
are encoded with a star-prefix, e.g. *sumlist. For the local callgraph, the names
of the functions are encoded with path and inverted slashes, e.g.
\sumlist@2\c@1\x. Library functions are encoded with just their names as
they appear in the program text. The names of the files in the include graph
representation are encoded with a %-prefix. The files with the scripts are proc-
essed in a batch file (see the prepare mode of Prometrix in section 5.5.1).

5.5.3 Metric statistics

In the global mode of Prometrix, one can obtain the metric values in different
formats. A part of a summary statistics table for the script complex.m (Table
5.1, without include files) is given in Table 5.9. The values of the maximum,
minimum, mean, standard deviation and median for various metrics are given.

Metric Max Min Mean Std.Dev Median
Number of nodes 11 2 3.07 2.43 2.00
Number of edges 15 1 2.71 3.77 1.00
Biggest prime 4 2 -19 -19 2.00
Depth of nesting 5 0 0.64 1.34 0.00
McCabe’s metric 6 1 1.64 1.34 1.00
State. testability 5 1 1.43 1.12 1.00
Branch testability 6 1 1.64 1.34 1.00
Fan-in 4 0 1.57 1.35 1.00
Fan-out 6 0 2.00 1.73 2.00
Fan-out ex. libraries 5 0 1.57 1.64 1.50

Table 5.9 Summary statistics of complex.m (without include files)

18 Aliases (see Miranda manual) are not taken into account
19 This metric is on an ordinal scale, so this statistical quantity is not appropriate

84 Chapter 5

The fan-in gives the number of functions that call a particular function; the
fan-out is the number of functions that is called by a function. It is optional to
include or exclude the calls to library functions. The number of functions de-
fined in the example script (Table 5.1) is 14 (thus excluding the library func-
tions); the total number of the nodes in the flowgraphs of these functions is 43.
Figure 5.8 and Table 5.9 are examples of the output from the Miranda ana-
lyser.

The summary statistics provide a good objective basis for the comparison of
different programs, for example in order to make a choice between competitive
implementations with respect to the testability of the programs.

5.6 Design of functional programs

In the previous sections, the modelling and static analysis of programs in
Miranda have been described. In this section, the analysis will be extended to
designs of functional programs. Functional languages have been used in soft-
ware development (Joosten, 1989) as executable specifications (Turner, 1985)
and for prototyping (Henderson, 1986). Miranda programs can be developed in
a top down manner by the use of stubs. The code can be analysed in the subse-
quent stages of the software development. Structured design in combination
with prototyping in a functional language has been described by Harrison
(Harrison, 1993a).

5.6.1 Pseudocode

The Miranda metric analyser described in section 5.5 can be used for designs
with stepwise refinement in pseudocode as described below. The design call-
graphs obtained in this way give the 'uses'-hierarchy as in structure charts
(Yourdon & Constantine, 1979).

In the pseudocode, any Miranda language construct can be used, including
the use of local definitions. However, the code need to be neither executable
nor type-correct to the Miranda-system. The '=' symbol in the function defini-
tion denotes a 'uses' - relation.

The example problem of complex numbers from section 5.2 will be used
again to illustrate the design of a Miranda program with this pseudocode. Two
steps of refinement are given in Table 5.10.

5.6.2 Design callgraph

This design given above can be depicted in a structure chart (see Figure 5.9)
without interface and procedural annotations.

Static Analysis of Functional Programs 85

The pseudocode can be offered to the Miranda metric analyser. The ana-
lyser will produce a design callgraph as in Figure 5.4, but now with the de-
pendencies given in the structure chart of the design. The metrics defined on
callgraphs in section 5.4.5 can be obtained for these design callgraphs as well.

|| A first design in pseudocode:

 main
 = getSublist
 convertAllToComplexList
 sumComplexList
 showComplex

 convertAllToComplexList
 = convertOneToComplex

|| A refinement of the first design:

 main
 = getSublist
 convertAllToComplexList
 sumComplexList
 showComplex

 getSublist list
 = drop firstpart list
 take secondpart list

 convertAllToComplexList list
 = [convertOneToComplex element | element <- list]

 convertOneToComplex list
 = complex(0,0), if length list = 0
 = complex(first list, 0), if length list = 1
 = complex(first list, second list), otherwise

 sumComplexList list
 = (head list) plus (sumComplexList (tail list))

 showComplex
 = showRePart
 showImPart

Table 5.10 Design of example program in pseudocode

From this second design, it is rather trivial to obtain a Miranda program.
The data structures have to be chosen; the arguments of the functions have to
be established; subsequently, the type declarations of the functions can be

86 Chapter 5

given; and finally the remaining Miranda code of the functions. (Notice that
this program will differ from the example program in Table 5.1.) Similar op-
erations in the graph can be grouped together in one file, e.g. the operations on
complex numbers. A modular structure will be obtained such as given in Table
5.8 (cf. Parnas, 1972).

main

getSubList
convertAll

List
ToComplex

sum
Complex
List

show
Complex

drop firstPart take secondPart
convert
OneTo
Complex

head plus tail
show
RePart

show
ImPart

complex length first second

Figure 5.9 Structure chart of design of example program

The design callgraph metrics can be compared with the metrics of the call-
graphs of the final program. Differences can be explained by details in the fi-
nal coding, such as the use of auxiliary functions or local functions. However,
there might have been other reasons to deviate from the design. In the exam-
ple program in Table 5.1, the conversion of a list of numbers to a complex
number is combined with the calculation of the sum of the list with complex
numbers, resulting in a slightly more efficient program than the one obtained
from the design above.

5.7 Conclusion

The metric analyser for Miranda programs is based on a flowgraph model and
a callgraph model. The flowgraph model uses the top level control structure in
the function definitions: the patterns, the guards and the expressions are not
expanded. It is questionable whether a further expansion would be useful for
the modelling aiming at the attribute of comprehensibility of programs. The
present model allows the analysis of test cases, and the detection of error
prone definitions written in a bad programming style. This hypothesis has to
be tested in further experiments (van den Berg & van den Broek, 1995b).

The callgraph model in the analyser results in four classes of callgraphs.
The include callgraph provides an insight in dependencies of the files used in
the program. The global callgraph gives an abstraction of the dependencies of
the top level functions in a script without being obscured by the local func-

Static Analysis of Functional Programs 87

tions. The local callgraphs are useful for a more detailed analysis of the indi-
vidual top level functions. The general callgraph is used for the standard sta-
tistical analysis of the program.

Furthermore, the Miranda metric analyser allows the construction of struc-
ture charts on the base of a design in pseudocode. The metric values of these
design callgraphs can be compared with the values obtained from the call-
graphs of the final code. Differences may point to design decisions made in a
later phase of the software development.

An important advantage of the modelling of functional programs presented
here is the close similarity with the modelling used for imperative programs.
The same standard metrics are applicable in both cases. In this respect, Harri-
son (1993b) showed a model that deviates from the modelling in section 5.4.
For example, a function definition f x = map h x, is modelled by Harrison with
two calls (f, map) and (map, h) instead of the calls (f, map) and (f, h). However,
the structure chart given in a previous article (Harrison, 1993a) is similar to
the global callgraph introduced here.

Somewhat larger programs have been analysed with the Miranda analyser.
Among others, a database system with about 800 lines of source code (not in-
cluding comments), divided over 4 data files. (The program is roughly equiva-
lent to about 8000 lines of imperative code (Turner, 1982)). There are about
450 functions defined in this system. Validation of the metrics, based on the
flowgraph and callgraph model, has to be carried out for functional programs
(cf. van den Berg et al., 1993; van den Berg & van den Broek, 1994, 1995b).
Furthermore, the analyser could be easily extended with a dependency graph
of types that are defined in a script.

The metric analyser, with the Miranda front end to the Prometrix system,
appears to be a very useful tool for the automated static analysis of also larger
functional programs: by displaying the dependencies in callgraphs, for provid-
ing data on metric values of standard metrics on callgraphs and flowgraphs,
and for detecting functions that are complex with respect to pre-set threshold
values, e.g. size and testability.

Acknowledgement

The authors would like to thank R. Bache for providing his notes on building
front ends, A. Belinfante for his advise on the use of the Synthesizer Genera-
tor, B. Helthuis for his support in coupling the Miranda front end to Pro-
metrix, M. Ramaer for the implementation of a part of the pre-processor, and
D. van der Sar for his work on the dependency model.

88 Chapter 5

 89

Part C : Validation

Issues

Ince (1989) asserts that very little empirical validation of software metrics has
occurred. What validation has been reported has been deficient in a number of
respects. A major criticism is that the experimental design of metrics projects
has been flawed. This is usually manifested in a sample size which is too
small. Another criticism is that the sample of programmers or designers used
has been artificial. Usually the subjects have been university students and not
staff involved in serious software development. A further criticism is that
much of the research carried out on metrics has ignored the large variation in
ability that occurs in the subjects who have been studied. Finally, there is the
criticism that reporting procedures can distort the validity of any experiment.
He concludes as follows: A major activity over the next few years will be the
empirical validation of metrics on real projects, with real staff, and in experi-
ments which have been properly designed.

Schach (1990) distinguishes experimentation-in-the-small and experimenta-
tion-in-the-many, to denote experimentation in the areas of programming-in-
the-small and programming-in-the-many, respectively. Experimentation-in-
the-small is an acceptable scientific technique for determining the validity of a
variety of software engineering techniques for programming-in-the-small. He
states that: there is apparently no way of conducting acceptable [controlled]
experimental trials to compare two [design] methods for programming-in-the-
many.

In a discussion of toy versus real situations for experimental research, Fenton
et al. (1994) conclude that evaluative research in the small is better than no
evaluative research at all. A small project may be appropriate for an initial
foray into testing an idea or even a research design.

Reviewing these issues, it has been stated by Shepperd and Ince (1994) that:

90 Part C : Validation

The importance of validation cannot be overstressed: metrics based on flawed
models are worse than valueless: they are potentially misleading. (Shepperd
& Ince, 1994)

Experimental studies

Metrics have been used in the evaluation of the benefits of software engineer-
ing methods and tools. A critical review of experimental studies is given by
Kitchenham et al. (1994). Three types of studies have been distinguished:
• formal experiments, i.e. a means of testing, using the principles and proce-

dures of experimental design, whether a hypothesis about the expected
benefit of a tool/method can be confirmed;

• case study, i.e. a trial use of a method/tool on a full scale project;
• survey, i.e. the collection and analysis of data from a wide variety of pro-

jects.
Each method has its advantages and its limitations. Formal experiments give
a high degree of precision, but may not scale-up to ‘real life’; case studies are of
a realistic scale but may not generalise to other projects or other staff or other
organisations; surveys are realistic and can be generalised, but it may be diffi-
cult to collect sufficient comparable data and to perform valid analysis.

In this review, some criteria are put forward for assessing the quality of the
studies. The criteria for formal experiments are the following:
1. a well defined experimental hypothesis
2. full definitions of all treatments
3. response variables directly derivable from the experimental hypothesis
4. an experimental design that identifies and controls confounding effects
5. a full description of the experimental conditions
6. use of a defined statistical design
7. use of valid techniques of statistical analysis.

In Chapter 6, a study is described to explore the validation of structure met-
rics. In terms defined above, this study could be characterised as an explora-
tory formal experiment-in-the-small: it considers Miranda-type expressions to
track the modelling, the definition of structure metrics, and the formal and ex-
perimental validation with respect to the comprehensibility of these expres-
sions.

In Chapter 7, this study is extended in order to explore the application of the
representational measurement theory to the validation of metrics.

Part C : Validation 91

There seems to be a minimum assumption that the empirical relation system
for complexity of programs leads to (at least) an ordinal scale. (Fenton, 1994)

The assumption of the ordinal scale has been investigated both in the formal
relational system and in the empirical relational system for Miranda type ex-
pressions. One important issue in this study is the use of axioms from meas-
urement theory.

Chapter 8 reflects on the validation of software metrics as presented in the
studies of the two previous chapters. As such, it raises more questions than it
provides answers. The different types of validities are placed in the develop-
ment process of a software metric. Again, the dilemma is discussed of the lim-
ited external validity of controlled experiments combined with their high in-
ternal validity, versus the high external validity of field studies combined with
their low internal validity.

In Chapter 9, the findings of a more extended formal experiment are reported.
The control-flow model for Miranda function definitions, described in Chapter
5, is used in the set-up of a controlled experiment on the comprehensibility of
structured and nonstructured definitions. As in the previous experiments, stu-
dents have been used in this experiment-in-the-small. The characteristics of
formal experiments given above can be traced quite easily in this study. The
experiment has been designed following a much cited study of Scanlan (1989).
The chapter contains some criticism of this study. Furthermore, some counter-
intuitive results are reported.

92 Part C : Validation

 93

Chapter 6

6. Validation of Structure Metrics: A Case Study 20

A framework for the validation of axiomatic structure metrics is presented. In a
case study, the comprehensibility of type expressions in the functional pro-
gramming language Miranda has been investigated. A structure metric for the
comprehensibility of type expressions has been developed together with internal
and external axioms. This structure metric has been validated experimentally.
The calibrated metric function results in a good prediction of the comprehensi-
bility.

6.1 Introduction

Software metrics are used to quantify objectively attributes of software entities
(Fenton, 1991). Three types of entities can be distinguished: products, proc-
esses and resources. Furthermore, there are two types of attributes: internal
attributes and external attributes. The latter not only depends on the software
entity, but also on other entities. Examples of internal attributes of software
products are size and structure; maintainability and reusability are examples
of external attributes. Structure metrics aim to quantify the internal structure
of the product. A general theory of structure metrics is provided by Fenton &
Kaposi (1989). Structure metrics are based on the compositionality principle.

If
 S,S1,...,Sn: System
 C: System × ... × System → System
 m: System → R
then there exists a function fC
 fC: R × ... × R → System
such that
 S = C(S1,...,Sn) ⇒ m(S) = fC((m(S1),...,m(Sn))

20 K.G. van den Berg, P.M. van den Broek & G.M. van Petersen (1993). Validation of Structure
Metrics: A Case Study. Proceedings of International Software Metrics Symposium METRICS 93,
Washington: IEEE Computer Society Press, 92-99.

94 Chapter 6

where
 R is a real number
 C is a system constructor
 m is a measure of attribute A

This principle asserts that the property of a system can be derived from the
properties of its constituent components without knowledge of the interior
structure of those components. Interaction between properties of components
is excluded.

A scheme for the measurement of a software system is given in Figure 6.1
(cf. Melton, 1992). Structure metrics have been developed for computer pro-
grams in imperative programming languages.

R S F

P D

R

m

t

m f

p q

m

R

a

dp

S = system R = real number
f = front-end F = flowgraph

p = parser P = parse tree

t = tree transform m = metric on S

m = metric on P m = metric on D

q = decomposition D = decomposition tree

p d

a

Figure 6.1 Scheme for measurement of software

The control flow in a program S is modelled in a flowgraph F by a function f.
By defining two constructors on flowgraphs, sequencing and nesting, a decom-
position algorithm q yields a unique decomposition tree D. Consequently, a
metric function md can be defined on this tree structure resulting in a number
R. Moreover, there is a non-structural measurement ma of the system with re-
spect to attribute A. The order in the result of this ma on systems should corre-
spond to the order on systems from the composition of functions md·q·f. A tool

Validation of Structure Metrics: A Case Study 95

supporting this analysis is Qualms (Bache & Leelasena, 1990). There are sev-
eral front-ends for the modelling of programs in flowgraphs, i.e. the function f.

An alternative to this approach is using a grammar to define systems. A
parse tree P is the result of the parser p of system S. Again, a metric function
mp can be defined on this tree structure. The order in the result of this ma on
systems should correspond to the order on systems from the composition of
functions mp·p. The existence of a function t, which transforms a parse tree to
a decomposition tree has to be investigated.

Grammars are used in complexity rankings of programs (Weyuker, 1988;
Tian & Zelkowitz, 1992). The use of grammars is similar to the approach with
algebraic structures as the base for compositional analysis (Zwiers, 1989). Al-
gebraic specification has been used in the validation of software metrics
(Shepperd & Ince, 1991). Attribute grammars have been used in software met-
rics (van den Berg, 1992)21. Structure metrics have been defined with attribute
grammars (Whitty, 1992).

In the case study, the investigated software products are type expressions
in the functional programming language Miranda. Type expressions and a
structure metric are described in paragraph 6.3. The external attribute of
these products is the comprehensibility to a human reader. The measurement
of the comprehensibility will be described in paragraph 6.4. The general
framework for the experimental validation is described in the following sec-
tion.

6.2 A framework for validation

A scheme of the framework for the experimental validation of structure met-
rics is displayed in Figure 6.2. Some model, a flowgraph or a grammar, will be
used to model the structure of the software product and results in a tree struc-
ture. The internal axioms provide the definition of a structure metric: this re-
flects the compositionality. The external axioms state the properties of the
software entities and give the hypothetical order of these entities with respect
to the external attribute.

The validation of the metric function consists of the following six steps:
a. The function satisfies the internal axioms: consequently, the function is a
structure metric.
b. The function satisfies the external axioms: it provides a consistent measure
with respect to the external attribute. This results in conditions on coefficients
in the metric function.

21 Chapter 3 of this thesis

96 Chapter 6

c. The external axioms hold in practice: the actual order on software products,
with respect to the external attribute, corresponds to the hypothetical order
expressed in the external axioms.
d. The function is calibrated: the coefficients are given actual values, deter-
mined from a non-structural measurement of the software products with re-
spect to the external attribute.

 external
attribute

software
entity structure

model theory

internal
axioms

axioms
external

metric-
function

calculated
values

measured
values

non-struct

correlation
prediction

validation
order

tree

 metric

consistency

calibration

Figure 6.2 Framework for the validation of structure metrics for an external
attribute of a software entity

e. The calibrated function is used for the rank order: the rank order correlation
between measured and calculated values is determined.
f. The calibrated function is used for prediction (in stochastic sense): the effi-
ciency of the prediction of actual values from calculated values is determined.

In the following section, the software entity in the case study - type expres-
sions in the functional programming language Miranda - will be introduced. In
addition, a structure metric for type expressions will be described.

6.3 Structure metrics of type expressions

In this paragraph, a subset of type expressions in Miranda, will be described.
A grammar for this subset will be presented, followed by some alternative
grammars. The internal axioms for a structure metric for type expressions will
be given, and subsequently, the external axioms and the metric function itself.

Validation of Structure Metrics: A Case Study 97

6.3.1 Type expressions

Many programming languages provide some kind of typing system. In Modula-
2, the type of variables has to be declared. The heading of a procedure declara-
tion must contain the types of the parameters and the result. E.g., the function
procedure

 PROCEDURE Digit (K: CHAR): BOOLEAN

In the functional programming language Miranda it is optional to the pro-
grammer to provide the type of a function. The type-checker derives the type
and compares this with the given type. The syntax of type expressions will be
illustrated with some examples in Table 6.1.

 digit :: char -> bool
 The function digit returns True if the argument is
 a digit and otherwise False

 ? digit '5'
 True

 head :: [*] -> *
 The function head returns the first element of
 a given list

 ? head [2,4,7,4]
 2

 first :: (*,**) -> *
 The function first returns the first component of
 a given 2-tuple

 ?first ('5',True)
 '5'

 split :: (*-> bool) -> [*] -> ([*],[*])
 The function split returns, given a predicate (boolean
 function) and a list, a tuple with the first component
 the list with elements satisfying the predicate and
 the second component the list with elements not
 satisfying the predicate

 ? split even [2,4,7,4]
 ([2,4,4],[7])

Table 6.1 Examples of type expressions with function applications in Miranda

98 Chapter 6

There are simple standard types, such as char, bool and num. The function
constructor is denoted with an arrow →. The function digit has the type:

 digit :: char → bool

Furthermore, there are type variables (Watt, 1990), in Miranda denoted with
one or more stars. Structured standard types are lists, denoted with square
brackets, and tuples, denoted with round brackets. In each example, the type
of the function is given and an informal description. After the question mark
prompt, a function application is given with its result on the next line.

6.3.2 A grammar for type expressions

Structure metrics for Miranda type expressions are derived from a grammar.
The grammar for a subset of type expressions is given below: here, a Miranda
data structure is used to model this grammar.

 typeexp ::= Num | Bool | Char | Var num |
 L typeexp | T [typeexp] | F typeexp typeexp

The first line of the grammar gives the rules for the prime structures and the
second line gives the rules for the three constructors in type expressions: the
list constructor, the tuple constructor and the function constructor.

F

FF

Var 1 Bool L T

Var 1 L L

Var 1 Var 1

Figure 6.3 Derivation tree of the type expression of the function split

The type of the function split from Table 6.1

 (* → bool) → [*] → ([*],[*])

Validation of Structure Metrics: A Case Study 99

can be parsed with this grammar, resulting in:

 (F (F (Var 1) Bool)
 (F (L (Var 1))
 T [L (Var 1)), (L (Var 1)]))

The parse tree or derivation tree of the function split is given in Figure 6.3.

6.3.3 Alternative grammars

The grammar described above is based on the right associativity of the func-
tion arrow. The type of the function split can be structured as a function
with one argument (the predicate (∗ → bool)) and with as result a function
with the type ([∗] → ([∗],[∗])). This approach is named currying (cf.
Watt, 1990). In other words, the type of split has been structured as follows:

 (∗ → bool) → ([∗] -> ([∗],[∗]))

There are two alternatives to this grammar. First, the type of the function can
be structured as a function with one argument of the product type ((∗ →

bool) × [∗]) and with a result of type ([∗],[∗]). The grammar for the
function constructor in this case contains

 F [typeexp] typeexp

The second alternative is obtained when the type of the function is structured
in a similar way as the tuple: each function arrow separates types in the func-
tion constructor, in the same way as the comma separates the types of the
components in a tuple.

The rule for the function constructor in this case is

 F [typeexp]

Clearly, the derivation tree, and derived properties such as depth, depends on
the chosen grammar. The ultimate choice of the grammar is determined by the
psychological plausibility of the parsing model with respect to comprehension,
and not by the actual parsing of the compiler. This approach has been used in
the parsing of natural language sentences (Derivational Theory of Complexity
(Fodor, Bever & Garret, 1974). New theories on the comprehension processes
for natural languages point to shortcomings of this approach (McNamara,
Miller & Bransford, 1991). One might expect interaction between properties of
constituent components. However, this theory could be adequate for the hu-

100 Chapter 6

man parsing of simple expressions in formal languages (cf. Green & Borning,
1990).

In the further validation study, the first grammar - based on the right asso-
ciativity of the function arrow - has been used.

6.3.4 The internal axioms

A function m is a structure metric if it is defined according to the composition-
ality principle. For type expressions, a structure metric should satisfy the con-
ditions listed in Table 6.2. These conditions are called the internal axioms. The
first four axioms refer to the prime structures and the constants ci denote
any number. The final three axioms refer to the constructors of type expres-
sions.

 m(Num) = cN
 m(Char) = cC
 m(Bool) = cB
 m(Var n) = cV(n)

 m(L t) = fL(m(t))
 m(F t1 t2) = fF(m(t1),m(t2))
 m(T[t1,...,tn]) = fT(m(t1),...,m(tn))

Table 6.2 Internal axioms for the structure metric of type expressions

6.3.5 The external axioms

The order on software entities with respect to a certain attribute should be re-
flected in the values obtained by the metric functions. This order is described
in an extension of the set of axioms, as has been done for flowgraphs (Fenton,
1991). These additional axioms are the hypotheses that will have to be tested.
They will be referred to as the external axioms. The software entities in this
case study are the Miranda type expressions, whereas the external attribute is
the comprehensibility of these expressions.

Let t and tk,... be type expressions. There are many possible hypotheses
about the intuitive order, as will be seen below:

1. An order between the prime structures, e.g.:

 m(Var n) > m(Bool) > m(Char) > m(Num)

Validation of Structure Metrics: A Case Study 101

2. An order between type expression with a constructor and with its com-
ponents, e.g.:
2.1. An order on (L t) and t

 m(L t) > m(t)

2.2. An order on (F t1 t2) and t1 and t2

 m(F t1 t2) > m(t1)
 m(F t1 t2) > m(t2)
 m(F t1 t2) > max(m(t1),m(t2))
 m(F t1 t2) > m(t1) + m(t2)

2.3. An order on T[t1,...,tn] and t1 ... t2
There are similar hypothetical orders as on F, but generalised for the number
of components. Some of these possibilities have been illustrated in Figure 6.4.

T[t1,t2,t3]

T[t1,t2] T[t1,t3] T[t2,t3]

t1 t2 t3

Figure 6.4 Order of type expressions with the tuple constructor

3. An order between type expressions with the same constructor, e.g.:

 m(F t1 t2) = m(F t2 t1)
 m(T[t1,...,tn+1]) > m(T[t1,...,tn])
 m(T[t1,...,tn]) = m(T[ti,...,tj]),
 where [ti,...,tj] ∈ perms[t1,...,tn]

4. An order between types with different constructors

 m(F t1 t2) > m(L ti), i=1,2
 m(T[t1,t2]) > m(L ti), i=1,2
 m(F t1 t2) > m(T[t1,t2])

The external axioms on the comprehensibility as used in the case study are
listed in Table 6.3. These hypotheses have been validated experimentally. This
will be described in paragraph 6.4.

102 Chapter 6

 1. m(L t) > m(t)
 2. m(T[t1,...,tn]) > max(m(t1),...,m (tn))
 3. m(T[t1,...,tn]) = m(T(perm[t1,...,tn]))
 4. m(F t1 t2) = m(F t2 t1)
 5. m(T[t1,...,tn+1]) > m(T[t1,...,tn])
 6. m(T[t1,...,tn]) > m(L ti), i=1,...,n
 7. m(F t1 t2) > m(T[t2,t1])

Table 6.3 External axioms for the structure metric with respect to the
comprehensibility of type expressions

6.3.6 The metric function

There are many candidates for the metric function on the tree structure, that
has been obtained so far; e.g., there are the sum and product VINAP-measures
(Fenton, 1991). In the Qualms system, many more metrics are available. From
a compositional theory for the attribute, the actual choice can be made. How-
ever, the final choice will be determined by the performance of the metric func-
tion in a prediction system. For the type expressions in the case study, a sim-
ple sum metric has been chosen, as listed in Table 6.4.

 m(Num) = cN
 m(Char) = cC
 m(Bool) = cB
 m(Var n) = cV(n)

 m(L t) = cL + m(t)
 m(F t1 t2) = cF + m(t1) + m(t2)
 m(T[t1,...,tn]) = cT + m(t1) +...+ m(tn)

Table 6.4 Metric function m for the structure of type expressions

This function m is consistent with the given internal axioms (Table 6.2). The con-
stants cL, cF, cT, cN, cC, cB and cV(n) should fulfil certain conditions,
which can be derived from the external axioms (Table 6.3) and the function
definition (Table 6.4), in order that the function is in agreement with the ex-
ternal axioms.

In the following paragraph, the experimental validation of this structure
metric for the comprehensibility of type expressions will be described. The ac-
tual values for the constants in the metric function m will be established.

Validation of Structure Metrics: A Case Study 103

6.4 Validation

The validation of structure metrics consists of six steps, as outlined in para-
graph 6.2. The experimental validation of a structure metric for the compre-
hensibility of type expressions will be described now. The first two steps of the
validation - the proof that the metric function satisfies the internal and exter-
nal axioms - have been accomplished in the previous paragraph. The next four
steps of the validation have to be carried out experimentally:
c. The external axioms hold in practice
d. The function is calibrated
e. The calibrated function is used for the rank order correlation
f. The calibrated function is used for prediction

Steps c and d are established in experiment 1 and steps e and f are verified
in experiment 2. A detailed account of these experiments is given in van Peter-
sen (1992).

For the (non-structural) measurement of comprehensibility of programs,
there are several techniques known from literature (Robson, Bennett, Corne-
lius & Munro, 1991):
1. answering (multiple choice) questions
2. filling in blanks
3. writing a program for a given input and output
4. writing fitting input and output for a given program
5. modifying an existing program
6. localising errors in a program

In this case study, a variant of the third technique has been chosen. A type ex-
pression will be shown to the subject. He or she is requested to write a func-
tion, that will result in exactly this type when offered to the Miranda type
checker. The time is measured between the moment that the type expression is
shown to the subject until the answer is completed by the subject. For exam-
ple, if the following type expression is shown

 f :: (num → char) → char → bool

then the following definition will be a correct answer:

 f g 'a' = True, if g 5 = 'b'

It is not required that the function itself has any sensible meaning; just the
given type must agree exactly with the type of the function obtained by the
type checker.

104 Chapter 6

6.4.1 Method

The subjects in the experiments are 16 first year students in Computer Science
at the University of Twente. During one term, they followed a course in Func-
tional Programming with Miranda (Joosten & van den Berg, 1990). They vol-
unteered to the experiments and were randomly distributed over the two.

The material consisted of 40 questions with type expressions offered to the
subjects. In each question the subject has to answer with a definition that
matches with the given type expression.

6.4.2 Procedure

The questions are offered to the subjects on a system in the computer science
laboratory (SUN workstations). The subjects know this system from their
practical assignments in the programming course. First, there is a short intro-
duction on how to answer the questions, and subsequently, two questions are
presented for trial. With the standard editor (Vi) the subjects type their con-
ceived answer. The time, elapsed between showing the question and leaving
the editor, is measured automatically by the system. A countered balanced de-
sign is chosen in this experiment. All subjects get the same questions, but they
are offered in a random order different to each subject.

6.4.3 Results

The hypothetical order on type expressions has been expressed in the external
axioms. Each axiom has a left hand side (LHS) and a right hand side (RHS).
The questions are assigned to the LHS and RHS of the axioms. In this way,
questions can be used more than once. This approach is someway similar to
the idea of atomic modifications (Zuse, 1991).

For example, axiom 1 states that m(L t) > m(t) . A question pair is for
the LHS [char → bool] and for the RHS char → bool.

A within subject design is chosen. Per axiom and per student the average
time is calculated for LHS-questions and RHS-questions. Only questions that
belong to an axiom of which both sides are answered correctly are taken into
account. Type writing errors in the answers have been corrected. The meas-
ured time is adjusted for an individual offset-time: the time for a subject to go
with the cursor to the answer frame and leaving the editor, without giving an
answer. Extreme values are discarded (in which the difference between the
averaged LHS and RHS times for an axiom differs more than three times the
standard deviation from the arithmetic mean). The differences between the
LHS and RHS appear to have a normal distribution. The average time is calcu-

Validation of Structure Metrics: A Case Study 105

lated for each side and each axiom from the averages of all students. The re-
sults are given in Table 6.5.

The significance of the difference between the LHS and the RHS is calcu-
lated with the Fischer t test (which applies to differences between correlated
pairs of means (Guilford & Fruchter, 1978). The degree of freedom is deter-
mined by the number of correct answer pairs (and not merely by the number of
subjects). The results are shown in Table 6.5.

 axiom t_LHS (sec) t_RHS (sec) Fischer-t(n)
1 LHS > RHS 19.0 08.0 t(26) = +7.09*
2 LHS > RHS 21.6 10.6 t(27) = +5.08*
3 LHS = RHS 33.8 29.7 t(15) = +0.70
4 LHS = RHS 15.2 20.7 t(22) = -3.12*
5 LHS > RHS 25.6 20.5 t(20) = +1.08
6 LHS > RHS 24.6 12.7 t(25) = +4.08*
7 LHS > RHS 19.7 12.7 t(17) = +2.03

 n = # degrees of freedom, * = p < .05

Table 6.5 Results of the validation of the external axioms with respect to the
comprehensibility of type expressions

The measured values of the times for the good answers in the first experiment
are also used for the calculation of the values of the coefficients in the metric
function. The questions are grouped now per constructor. For example, the cal-
culation of the coefficient cT from the equation:

 m(T[Num, Bool, F Char Bool])
 = cT + m(Num) + m(Bool) + m(F Char Bool))

The time measured for the type expression left is 48 seconds and for the type
expressions right is measured 5.0, 7.0 and 27.5 seconds respectively. From
these values, cT has been calculated and averaged over the other values ob-
tained for cT. In Table 6.6 the average values for the coefficients are given.

cL cT cF cC cN cB cV
10 6 7 4 5 7 19

Table 6.6 Values for the primes and the constants in the metric function (secs)

In the second experiment, a new set of questions is offered to the second group
of subjects. The average time is calculated from each good answer and, based
on these values, the rank order of type expressions has been established.

106 Chapter 6

Moreover, with the calibrated metric function from the first experiment, the
rank order of the same type expressions has been calculated. The correlation
between both orders has been determined according to Spearman (Guilford &
Fruchter, 1978). The rank order correlation coefficient is 0.59. (Pearson's coef-
ficient can not be used because the scores have been obtained in dependent
pairs).

On the basis of the calculated value of the comprehensibility with the cali-
brated metric function, a prediction can be made of the actual comprehensibil-
ity (as would have been obtained by measurement). The forecasting efficiency
(Guilford & Fruchter, 1978) is 19%; i.e. a reduction in variance of the predicted
comprehensibility is achieved by using the calculated metric value.

6.5 Discussion

From the values in Table 6.5, it appears that for axioms 1, 2 and 6 there is a
significant difference between the LHS and RHS, according the hypothesised
order. For axiom 5 and 7, no significant difference has been found. In case of
axiom 5, a possible cause of this fact could be that the expansion of a tuple
with a component only gives a small, and therefore a difficult to measure, ef-
fect. For axiom 7, the reason of the small difference is not clear. Axioms 3 and
4 have to be treated separately. It seemed to be reasonable to include equali-
ties in external axioms. However, equalities can not be validated experimen-
tally in the way described before. Therefore, nothing can be concluded from the
results for these two axioms.

It has been expected that the comprehensibility of a function is more diffi-
cult than of a tuple with the same components. Table 6.6 shows that the actual
difference is small (but significant). The value for the constant cV for type
variables is remarkably high.

The rank order correlation coefficient, for the calculated and measured val-
ues, is reasonably high. However, this coefficient is as high if the metric func-
tion returns the numbers of nodes and leaves in the decomposition tree. This
case can be seen as the Halstead measure for the length of a 'program' (Hal-
stead, 1977). The nodes are the total number of operators and the leaves the
total number of operands. The so defined measure is a structure metric. It has
not been checked whether this length metric satisfies all internal axioms. A
high correlation coefficient is found as well if the calculated rank order is
based simply on the size of the type expressions, i.e. the number of characters.

The forecasting efficiency is reasonably high. An even higher value (53%) is
obtained when the values are grouped (16 groups). This leads to a considerable
reduction in the variance of the prediction of the comprehensibility from the
calculated metric value.

Validation of Structure Metrics: A Case Study 107

6.6 Conclusion

In this chapter a framework has been presented for the experimental valida-
tion of structure metrics. In a case study, a structure metric and its validation
for the comprehensibility of type expressions in Miranda has been studied
within this framework. No hard conclusions can be drawn about the absolute
values obtained in the experiments. There is need for additional experiments.
The validation for the alternative grammars of type expressions has to be car-
ried out. Metric functions, which incorporate the depth of nesting, have to be
investigated. The influence of type expressions for standard functions has to be
included (e.g. the type expression (* → *) will be recognised as belonging to
the standard identity function id). The set of primes has to be extended (e.g. a
list of char will be comprehended as a string). The experiments have to be ex-
tended to include the whole Miranda type language (e.g. type synonyms, re-
cursive types and abstract data types should be included). The effect of multi-
ple occurrences of types in type expressions, which cannot be accounted for
with compositionality, has to be investigated.

There are some general conclusions from this case study. The use of gram-
mars, as an alternative to flowgraphs in the modelling of software in a tree
structure, has been shown. The role of the external axioms, to express the hy-
pothetical order on the software entities with respect to the external attribute,
has been emphasised. In a prediction system based on structure metrics, there
has to be a theory of compositionality for the external attribute. The experi-
mental validation of the hypothetical order and the calibration of the metric
function both require a large amount of experimental data on the software en-
tities. Statistical analysis is needed to establish the actual order on these soft-
ware entities and for the calculation of quantities, such as the rank order cor-
relation coefficient and the forecasting efficiency.

Acknowledgement

The authors would like to thank H. Muijs for the modelling of the Miranda
type expressions as part of his M.Sc. thesis, and J. van Merriënboer for valu-
able comments on the experimental set up and the statistical analysis.

108 Chapter 6

Zwei geordnete Mengen M und N nennen wir 'ähnlich', wenn sie sich gegen-
seitig eindeutig einander so zuordnen lassen, dass wenn m1 und m2 irgend
zwei Elemente von M, n1 und n2 die entsprechenden Elemente von N sind,
alsdann immer die Rangbeziehung von m1 zu m2 innerhalb M dieselbe ist,
wie die von n1 und n2 innerhalb N. Eine solche Zuordnung ähnlicher Mengen
nennen wir eine 'Abbildung' derselben auf einander.

 Cantor (1895)

 109

Chapter 7

7. Axiomatic Testing of Structure Metrics 22

In this chapter, axiomatic testing of software metrics will be described. The test-
ing is based on representation axioms from the measurement theory. In a case
study, the axioms are given for the formal relational structure and the empiri-
cal relational structure. Two approaches of axiomatic testing are elaborated:
deterministic and probabilistic testing.

7.1 Introduction

In this chapter, axioms from representational measurement theory will be util-
ised to establish the theoretical and empirical order of software entities with
respect to some attribute. A simplified model for software measurement will be
used (see Figure 7.1). Software entities will be considered: products, processes
or resources (Bush & Fenton, 1990). Data on an external attribute (e.g. main-
tainability, reusability) of these entities are collected with some measure m'.

entities abstractions

m' a m

softwarenumbers numbers

external attribute internal attribute

Figure 7.1 Model for software measurement

The external attribute will be related with some internal attributes, such as
size or structure. The internal attribute is measured with a metric function m
on abstractions of the software entities. The measure m is validated to the ex-
tent to which it preserves the order on the software entities obtained inde-
pendently of m by the quantified criterion m' (Melton et al., 1990).

22 K.G. van den Berg & P.M. van den Broek (1994), Axiomatic Testing of Structure Metrics. Pro-
ceedings of the Second International Software Metrics Symposium, London: IEEE Computer Soci-
ety Press, 45-53.

110 Chapter 7

In a case study, axioms from the measurement theory will be tested, both for-
mally and empirically. The case itself, comprehensibility and structure of type
declarations, is of interest to researchers in the field of programming method-
ology. More general, the case is used to exemplify the application of represen-
tational measurement theory in software measurement and validation.

The representational approach has been used in software measurement
(e.g., Baker et al., 1990; Fenton, 1990; Melton, 1990; Bieman et al., 1992; Mel-
ton et al., 1992; Zuse, 1992). Some basic concepts in this measurement theory
(Krantz et al., 1971; Finkelstein & Leaning, 1984; Suppes et al., 1989; Luce et
al., 1990) will be defined according to Roberts (1979).

A relational structure is a (n+1)-tuple (A, R1,...,Rn), where A is a set, and
R1,...,Rn are relations on A. A function f: A → A' is called a homomorphism
from relational structure (A, R1,...,Rn) into relational structure (A', R1',...,Rn') if,
for each i ∈ 1..n,

 Ri(a1,a2,...,ari) = Ri'(f(a1),f(a2), ...,f(ari))

A homomorphism is an order preserving mapping. The triple ((A,R1,...,Rn), (A',
R1',...,Rn'),f) is said to be a scale. If (, ,f) is a scale and ϕ is a function such
that (, ,ϕ.f) is a scale as well, then ϕ is said to be an admissible transforma-
tion of scale. The representation → is regular if all scales (, ,f) are related
via an admissible transformation of scale. The class of admissible transforma-
tions of scale of a regular representation defines the scale type of the represen-
tation. Some common scale types are: absolute, ratio, interval, ordinal and
nominal scale (Roberts, 1979: 64). The focus in the case study is on ordinal
scales, which are defined by monotone increasing transformation functions.

The aim of software measurement is to enable the comparison of software
entities with respect to some attribute. As given in the model of Figure 7.1,
there are four relational structures. The outmost structures are numerical re-
lational structures. The software entities with their relations form the empiri-
cal relational structure. The fourth relational structure involves the abstrac-
tions. Axioms, that will be tested, state sufficient conditions for the existence
of a regular scale. By investigating the axioms, the representation and meas-
urement scale of these structures can be established.

In order to make the discussion of axiomatic testing concrete, a case study
will be presented related to a specific kind of software documentation: type
declarations. The programmer provides explicit information about the type of
the objects in the program. This form of documentation not only may have an
impact on the reliability of the software, but also on the comprehensibility to
human readers of the programs (reviewers, maintenance programmers). The

Axiomatic Testing of Structure Metrics 111

software entities are type declarations in the functional programming lan-
guage Miranda (Turner, 1986). Type declarations themselves have a certain
degree of (cognitive) complexity: they are easy or difficult to comprehend. 'The
comprehensibility' will be taken as the external attribute. The internal attrib-
ute is 'the structure' of type expressions. The relationship between the com-
prehensibility of type expressions and their structural properties will be inves-
tigated: first, by establishing the scale of measurement of the internal attrib-
ute and the external attribute, and then by investigating the correspondence
between both measurements.

This chapter is organised as follows. In section 7.2, more details about the
software entities in the case study, the type declarations, will be given. In the
subsequent section, the modelling of the structure of type expressions is elabo-
rated. The actual collection of data on the external attribute, the comprehensi-
bility, will be described in section 7.4, with an exemplification of the determi-
nistic and probabilistic testing of axioms. The final section discusses some re-
sults obtained with this approach.

7.2 The case study

The software entities considered in the case study, type expressions, will be
introduced. In an imperative programming language like Modula-2 or Pascal,
the heading of a procedure declares the type. For example, the heading of the
function procedure IsDigit is:

 PROCEDURE IsDigit (C: CHAR): BOOLEAN;

In the case study, type expressions in the functional programming language
Miranda are considered. The type declaration of the function isdigit is (de-
noted with :: and on the right hand side a type expression):

 isdigit :: char → bool

A function type is denoted with the symbol "→". The function split has a more
complex type: split returns a tuple with two lists of numbers, one with ele-
ments of a given list that satisfy a predicate, and the second list with elements
that do not.

 split :: (num → bool) → [num] → ([num],[num])

The type of the predicate, the first argument of the function split, is a function
type (num → bool). This argument is enclosed by round grouping brackets. The

112 Chapter 7

type of the second argument [num] is a list type, a list of elements of type num.
A list type is denoted with square brackets. The type of the result of the func-
tion is a tuple type with two components, each of type [num]. A tuple type is
denoted with round brackets and component types separated by a comma. It is
possible to define type synonyms, e.g. numlist == [num]. The type of function
split with this synonym is:

 split :: (num → bool) → numlist → (numlist,numlist)

The canonical form of the two given types of the function split, as used by the
type checker, is the same (and equal to the first one).

Type declarations form an important clue to the understanding of functions
in a program. They give a partial specification of the function: the type of its
arguments and the type of the result. The complexity of the type declaration
might give an indication of the complexity of the task to be performed by the
function (e.g. Cardelli & Wegner, 1985).

In the 'real world model' (Maki & Thompson, 1973), restrictions will be im-
posed on the 'real world' entities and phenomena. In the case study the type
expressions will be restricted to three standard types: char, num and bool, and
three type constructors: the function type, the tuple type, and the list type (for
homogeneous lists). Furthermore, neither type variables nor abstract data
types are considered. Also, the influence of the naming of types and typo-
graphic issues will not be considered. Type synonyms are not considered. In
other words, these aspects will be kept invariant in the case study. Type ex-
pressions with these restrictions will be called simple type expressions.

Type expressions are studied in the context of programs developed in an
academic environment. It is evident that comprehensibility depends on the ex-
perience of the reader. The case study is carried out with novice Miranda pro-
grammers with corresponding proficiency. Only structural properties of simple
type expressions in Miranda in relation with their comprehensibility to novice
programmers are examined.

7.3 The theoretical order

In this section, the modelling of type expressions is described. The abstraction
of type expressions is defined, a relation on abstract type expressions and a
structure metric (cf. Melton et al., 1990). Structure metrics are based on the
compositionality of the structural properties (Fenton & Kaposi, 1989). On the
basis of these definitions, the scale of measurement is established.

Axiomatic Testing of Structure Metrics 113

7.3.1 The abstraction

A relational structure (A, R1,...,Rn) is defined. Set A consists of abstract type
expressions; R1,...,Rn are relations on abstract type expressions. In some cases,
the corresponding operation of a relation will be used in the relational struc-
ture (cf. Roberts, 1979: 41). These operations are called concatenation opera-
tors or constructors.

First, the mapping of simple type expressions to abstract type expressions
is defined. This abstraction implies the following rules:
1. the order between components in a tuple type expression is disregarded
2. grouping brackets around a tuple type expression with one component are

disregarded
3. grouping brackets implied by the right associativity of the function type

constructor are disregarded.
For abstract type expressions the following data structure will be used as
model:

 texp ::= L texp | F [texp] | T {texp} | C | N | B

with respectively: L the list type constructor; F the function type constructor; T
the tuple type constructor; C the standard type char; N for num and B for bool.
Next to the constructors, [texp] denotes an ordered list of abstract type expres-
sions, and {texp} denotes a multiset. Some examples of the abstraction are
given in Table 7.1.

 type expression abstraction
ta ((num → [bool]), bool) T { F [N, L B], B}
tb (bool, num → [bool]) T { B, F [N, L B]}
tc num → ([bool] → bool) F [N, L B, B]
td num → [bool] → bool F [N, L B, B]
te (num → [bool]) → bool F [F [N, L B], B]
tf (num→bool)→[num]→([num],[num]) F [F [N,B], L N , T {L N, L N}]

Table 7.1 Example type expressions with abstractions

The abstractions of ta and tb are the same: the round brackets in (num →
[bool]) are disregarded (rule 2), as the order of components in the tuple (rule
1). The abstractions of tc and td are the same. The abstraction of tc is not F [N,
F [L B, B]], since the round brackets in ([bool] → bool) are disregarded (rule
3). In other words, the type of the result of a function is not allowed to be a
function type. The abstractions of td and te are different, since the grouping

114 Chapter 7

brackets in te can not be disregarded (→ is right associative). With tf the ab-
straction of the type of the example function split is given.

There are alternative abstractions; for example, to restrict the function type
to F [t1, t2] (only two types in a function type); or to disregard the order of the
arguments of functions. These alternatives are discussed in van den Berg et al.
(1993). The choice between abstractions of entities is determined by the actual
use of the abstractions: the establishment of a good correspondence between
an internal attribute based on these abstractions, and an external attribute of
the entities.

7.3.2 The containment relation

The containment relation on abstract type expressions, denoted by p , will be
defined. Let a and b be abstract type expressions, with concatenation operators
⊕ and ⊗ respectively, and with maximal subexpressions a1,...,an and b1,...bm
respectively, as depicted in Figure 7.2.

+

a a a
1 2 n

...

a = x

b b b
1 2 m

...

b =

Figure 7.2 Two abstract type expressions

Then a p b iff a is contained in b in the following sense: a is contained in b if a
is contained in bi for some i. Moreover, if ⊕ = ⊗ then a is contained in b if each
ai is contained in some bi', subject to the conditions that 1',...,n' are pairwise
different, and if ⊕ = F then [1',...,n'] is ordered. The containment relation is a
partial order.

Consider, for example, the set of abstract type expressions in Figure 7.3:

F

L

B

T

BN

T

L

N

F B

B

T

B N

t
1 =

F

B N

t
2 =

t
3= t

4=

Figure 7.3 Example abstract type expressions

Axiomatic Testing of Structure Metrics 115

The containment relation of these type expressions, ({t1,t2,t3,t4}, {(t1,t3), (t1,t4),
(t2,t4)}), is given in partial order diagram (Hasse diagram) in Figure 7.4.

 t t

t t3 4

1 2

Figure 7.4 Partial order with p on example type expressions of Figure 7.3

With the definition of this containment relation, the formal relational struc-
ture (texp, p , L, F, T, C, N, B) for abstract type expressions has been de-
scribed.

7.3.3 Extension of the containment relation and ordinal scale

For the relational structure from the previous section, a measurement scale
will be considered, based on theorems from measurement theory (Roberts,
1979). Only ordinal measurement will be discussed here. The following theo-
rem will be used:

Suppose A is a countable set and R is a binary relation on A. If f is a real-
valued function on A which satisfies

 a R b ⇔ f(a) ≤ f(b) (. 1)

then ((A, R), (Re, ≤), f) is an ordinal scale (Roberts, 1979: 110).
For abstract type expressions, a linear structure metric function m is de-

fined, with all constants ci ≥ 0 :

 m(C) = cC (. 2)
 m(N) = cN (. 3)
 m(B) = cB (. 4)
 m(T{t1,...,tn}) = cT + m(t1) + ... + m(tn) (. 5)
 m(L t) = cL + m(t) (. 6)
 m(F[t1,...,tn]) = cF + m(t1) + ... + m(tn) (. 7)

The theorem above is not applicable for this function m and the contain-
ment relation p on type expressions, because equation 1 is not satisfied (p is a
partial order). Therefore, with this function m a new relation pm on type ex-
pressions is defined as follows:

 ta pm tb ⇔ m(ta) ≤ m(tb) (. 8)

116 Chapter 7

The relation pm is an extension of the containment relation p , i.e.

 ta p tb ⇒ ta pm tb (. 9)

From the theorem above it follows that ((texp ,pm), (Re, ≤), m) is an ordinal
scale.

In this section, an abstraction of type expressions and a containment relation
on abstract type expressions have been defined. An extension of this relation
derived from a structure metric function provides measurement of the internal
attribute structure of type expressions on an ordinal scale. This allows the in-
vestigation of a correspondence of the extension with the empirical order as
given by the quantified criterion, which also maps on (Re,≤) (see subsequent
section). This approach differs from the one proposed by Fenton (1992). For a
partial order on flowgraphs, Fenton defines a mapping of flowgraphs to (N,|),
where N is the set of natural numbers and | is the relation 'divides without
remainder', instead of a mapping to (Re,≤), in order to satisfy the representa-
tion condition (equation 1). In the following section, the empirical order of type
expressions will be discussed.

7.4 The empirical order

In this section, the order of type expressions will be established with respect to
the external attribute comprehensibility. The conditions for an ordinal scale
are investigated.

There are several approaches to the measurement of comprehensibility of
programs. In the case study, one measure has been chosen for the comprehen-
sibility of type expressions (van den Berg et al., 1993)23: the time in seconds
needed for a subject to read a given type expression and to conceive and type-
write a (function) definition with exactly this type in the 'standard' program-
ming environment. The time between showing the type expression on the
screen and the completion of the answer is measured automatically. After-
wards, with the type checker of the programming system, the answer is
marked as correct or incorrect. This time measurement will be used as crite-
rion for the comprehensibility.

The data have been collected in controlled experiments. The subjects in the
experiment are novice programmers, all first year students in computer sci-
ence. Two data sets are used, each based on responses of 14 subjects to 42 type
expressions (per data set 588 responses). Dataset1 consists of responses of 14

23 Chapter 6 of this thesis

Axiomatic Testing of Structure Metrics 117

subjects to 16 type expressions, with a total of 241 correct responses; dataset2
is based on responses of 14 other subjects to another set of 16 type expressions,
with a total of 347 correct responses. The type expressions are offered to the
subjects in random order. Of the 42 questions in the original experiment, ex-
pressions with type variables have not been considered here, neither have
questions with less than 6 correct answers. In Table 7.2 the type expressions of
dataset1 are given. Further details of the experiments can be found in (van Pe-
tersen, 1992; van den Berg et al., 1993).

rank nr type expression # correct
(max 14)

average
time (sec)

standard
dev (sec)

16 20 bool → char → bool 6 50.0 27.6
15 27 (num,bool) → (num,bool) 10 44.7 24.7
14 12 num → char → char 7 35.0 19.6
13 13 [(num,bool)] 12 30.0 9.8
12 18 bool → num 14 28.9 12.8
11 5 [char] 12 24.8 6.2
10 34 (num,bool,char) 13 24.7 7.2
9 15 num → bool 12 23.3 9.5
8 28 char → char 7 23.1 6.7
7 17 char → bool 8 21.8 8.3
6 26 num → num 10 19.7 10.6
5 14 (num,bool) 14 18.8 5.4
4 3 bool 14 17.7 9.6
3 2 num 14 14.6 5.5
2 41 (num,num) 13 13.9 3.1
1 1 char 13 12.8 3.2

Table 7.2 Ranking of type expressions in dataset1 according to the average time

The following approaches in the analysis of the data will be used. Firstly, a
global analysis will be given based on the average time measured for each type
expression. Secondly, an axiomatic analysis of the relative preference of each
subject between pairs of type expressions will be described. Finally, an axio-
matic analysis based on the relative frequencies of these preferences will be
considered.

7.4.1 Global analysis of the empirical order

For each type expression, the average time for all correct responses has been
calculated. The data for the first set are given in Table 7.2.

118 Chapter 7

In Figure 7.5, for a subset of type expressions of dataset1, the empirical or-
der based on the average time and the theoretical partial order are compared.
The empirical order for this subset, except the value obtained on type expres-
sion 41, is an extension of the partial order of the 9 abstract type expressions.
Taking into account a rather large standard deviation in the measured values,
there is reasonable agreement between the theoretical order and the empirical
order based on the average time. However, the scale type of the empirical or-
der itself is not yet known from this analysis. For this purpose, the properties
of this order have to be analysed by examining the axioms, as has been done
for the theoretical order in the previous section.

empirical order

average
time (sec)

44.7

28.9

23.3

17.7

14.6

3: bool

2: num

18: bool -> num

15: num -> bool

27: (num,bool) -> (num,bool)

theoretical partial order

13: [(num,bool)]

14: (num,bool) 18.8

30.0

26: num -> num

41: (num,num)

13.9

19.7

Figure 7.5 Theoretical partial order in Hasse diagram and empirical order of
subset of type expressions in dataset1

7.4.2 Axiomatic analysis of the empirical order

Two types of axiomatic analysis will be ensued: a deterministic analysis and a
probabilistic analysis. Each of them aims at establishing the representation of
the empirical order by testing the axioms from the theorems. The theory of the
deterministic analysis can be found in Krantz et al. (1971); of the probabilistic
analysis in Suppes et al. (1989). In this section, Roberts (1979) will be used as
the main reference. It should be expected that the comprehensibility measure
in the experiment is on an ordinal scale. In that case the data should be con-
form a (strict) weak order.

Axiomatic Testing of Structure Metrics 119

7.4.2.1 Deterministic axiomatic analysis

On the basis of the time measurement (in seconds) for each type expression
per subject, it is possible to define the relation R for all type expressions a, b in
the data set A: aRb ⇔ ta > tb. This relational structure (A,R) represents the
'preference' of each subject in the indication of the most difficult type expres-
sion. The preference structure (A,R) can be represented in the preference ma-
trix (A,p) defined as, ∀ a,b ∈ A:

 pab = 1 ⇔ aRb and pab = 0 ⇔ ¬ aRb (. 10)

The ranking of correctly answered questions per subject is determined. All
these individual rankings form a profile, i.e. a list of k rankings (k is the num-
ber of subjects). In the experiment, not all individual rankings are complete,
since not all questions have been answered correctly. There are only 2 subjects
for each data set with a complete ranking. A reduction of dataset1 to a subset
of 7 questions (subset1 = {12, 13, 15, 18, 20, 27, 34}) results in 5 complete rank-
ings; also, a reduction of dataset2 to 7 questions (subset2 = {115, 118, 123,
124, 127, 129, 132}) results in 5 complete rankings.

A group preference structure (A,M) from a list of complete individual prefer-
ence structures can be derived, for example according to the simple majority
rule, defined as follows (Roberts, 1979: 118):

 aMb ⇔ #aRb > (#aRb + #bRa)/2 (. 11)

where #xRy is the number of relations R which contain (x,y).
The group preference matrix of subset1 based on the simple majority rule is

given in Table 7.3. In total 35 correct responses have been used.

nr 12 13 15 18 20 27 34
12 0 1 1 1 0 0 1
13 0 0 1 1 0 1 1
15 0 0 0 0 0 0 0
18 0 0 1 0 0 0 1
20 1 1 1 1 0 1 1
27 1 0 1 1 0 0 1
34 0 0 1 0 0 0 0

Table 7.3 Group preference (A,M) for 7 type expressions of dataset1 (k=5)

A group ranking can be obtained from the group preference structure if the
data are consistent: there are no intransitivity's (i.e. a preference cycle: pab = 1

120 Chapter 7

∧ pbc = 1 ∧ pca = 1) allowed. For this subset there are inconsistencies in the
group preference structure. The three type expressions that are not transitive
are: 12: (num → char → char); 13: [(num,bool)]; and 27: (num,bool) →
(num,bool).

The group preference structure of the second subset is consistent. It is a
strict weak order (asymmetric and negatively transitive). An ordinal function
m for this subset is defined as follows (Roberts, 1979: 105):

 m(x) = #{y ∈ A such that xRy} (. 12)

The function m for the subset of type expressions of dataset2 is given in Table
7.4.

nr function
123 m ([char] → bool) = 6
124 m (bool → [char]) = 5
129 m ([char]) = 4
132 m (bool → char) = 3
127 m (char → bool → bool) = 2
115 m (bool) = 1
118 m (char) = 0

Table 7.4 Function m for type expressions in subset2

For the first subset, this function yields the same value for each of the type ex-
pressions 12, 13 and 27, resulting in a violation of the representation condition
(equation 1).

7.4.2.2 Probabilistic axiomatic analysis

A major disadvantage of the analysis in the previous section is that only com-
plete preference structures can be taken into account. With a probabilistic
analysis this can be circumvented. It is possible to calculate the probability
matrix (Roberts, 1979: 273) with relative frequencies based on all correctly an-
swered questions:

 pab = (#aRb) / (#aRb + # ¬(aRb)), if a ≠ b (. 13)
 pab = 0.5, if a = b (. 14)

From this it can be seen that: ∀ a,b ∈ A: pab + pba = 1. Such a probability ma-
trix represents a forced choice pair comparison structure (A,p).

This structure (A,p) is weak stochastic transitive if, ∀a,b,c ∈ A :

Axiomatic Testing of Structure Metrics 121

 pab ≥ 0.5 ∧ pbc ≥ 0.5 ⇒ pac ≥ 0.5 (. 15)

A weak order (A,W), associated with a weak stochastic transitive structure
(A,p), is given by W defined on A by

 aWb ⇔ pab ≥ pba (. 16)

nr 12 13 15 18 20 27 34
12 0.50 0.67 1.0 0.71 0.40 0.43 0.71
13 0.33 0.50 0.60 0.58 0.33 0.44 0.64
15 0.0 0.40 0.50 0.25 0.0 0.0 0.42
18 0.29 0.42 0.75 0.50 0.33 0.30 0.54
20 0.60 0.67 1.0 0.67 0.50 0.60 0.83
27 0.57 0.56 1.0 0.70 0.40 0.50 0.89
34 0.29 0.36 0.58 0.46 0.17 0.11 0.50

Table 7.5 Probability matrix for 7 type expressions of dataset1 (k=14)

As an example, in Table 7.5 the probability matrix is given for the same subset
of type expressions as in the previous section. The matrix can be compared
with the group preference matrix of Table 7.3. However, the matrix presented
here has been calculated with data of all 14 subjects. In total 74 correct re-
sponses have been used. This probability structure is weak stochastic transi-
tive and hence consistent, contrary to the group preference of 5 subjects.

rank type expressions
7 20: bool → char → bool
6 27: (num,bool)→(num,bool)
5 12: num → char → char
4 13: [(num,bool)]
3 18: bool → num
2 34: (num,bool,char)
1 15: num → bool

Table 7.6 Ranking of 7 type expressions based on associated weak order (k=14)

On the basis of this probability structure for these type expressions, an associ-
ated weak order can be calculated with a ranking (see Table 7.6).

In the previous analysis, no attention has been given to measurement errors
and the significance of the experimental data. For the probability matrix from

122 Chapter 7

this data set (Table 7.5), the significance of the relative frequencies has been
calculated. The sign test has been used24 (Guilford & Fruchter, 1978). A sig-
nificance of α < .09 will be achieved if 10 out of 14 subjects show the same sign
of the difference between the time measured for two type expressions ta and
tb, which presumes a probability pab ≥ 0.71. For the probability of the type ex-
pressions in subset1, the structure (A,W) is calculated with

 aWb ⇔ pab ≥ λ (. 17)

with threshold probability λ = 0.75. The structure obtained in this case is not a
weak order, however it satisfies the axioms for a semiorder, which are the fol-
lowing (Roberts, 1979: 250):

 ¬ aRa (. 18)
 aRb ∧ cRd ⇒ (aRd ∨ cRb) (. 19)
 aRb ∧ bRc ⇒ (aRd ∨ dRc) (. 20)

A weak order (A,W) associated with the semiorder (A,R) can be obtained with
W defined on A by (Roberts, 1979: 256):

 aWb ⇔ ∀ c ∈ A: (bRc ⇒ aRc) ∧ (cRa ⇒ cRb) (. 21)

For the semiorder obtained above, the associated weak order has been calcu-
lated. A ranking for this weak order is given in Table 7.7, with ties at ranks 4-
5 and 6-7 (resulting respectively in rank 4.5 and 6.5).

rank type expressions
6.5 20: bool → char → bool

27: (num, bool) → (num, bool)
4.5 12: num → char → char

18: bool → num
3 13: [(num, bool)]
2 34: (num, bool, char)
1 15: num → bool

Table 7.7 Ranking of a subset of 7 type expressions based on the associated
weak order of the semiorder (λ=0.75, k=14)

24 The Wilcoxon signed ranks test is not applicable because the rankings are not complete for all
subjects.

Axiomatic Testing of Structure Metrics 123

From the previous analysis of the empirical order of type expressions with re-
spect to the external attribute comprehensibility, it can be concluded that, for
subsets of type expressions, the measurement of time to find an instance of a
given type, results in an ordinal scale.

7.5 Discussion

It has been shown that type expressions can be measured on an ordinal scale
with respect to the internal attribute structure by defining an extension of a
containment relation on abstract type expressions.

In the case study, the comprehensibility of simple type expressions has
been operationalized as a time measurement. The ranking of the average time
is in reasonable agreement with a weak order extension of the partial order
obtained for the corresponding abstract type expressions. Axiomatic analysis
has been used to localise inconsistencies in the experimental data: an example
has been given of an intransitive group preference. An ordinal measure has
been calculated for a consistent data set. Incomplete data sets have been ana-
lysed with a probabilistic consistency axiom: the weak stochastic transitivity.
An ordinal measure has been established based on these probabilistic data.
Measurement errors have been treated with a threshold probability and
semiorders. The order obtained in this way shows a deviation of the previous
order and appears to have more ties.

Subsequently, the correspondence between the two measurements can be
established now. There are two steps which have been described in a previous
study (van den Berg et al., 1993)25. Firstly, the structure metric function m de-
fined in section 7.3.3 is calibrated, resulting in values for ci. This can be done
with standard linear regression techniques. Secondly, this calibrated function
is used in the prediction of the comprehensibility values. The forecasting effi-
ciency of the prediction has been established.

Another important aspect is the use of the approach, outlined in this chap-
ter, to other software entities with other attributes. There seems to be at least
one important field where this approach could be successful. This is the do-
main of complexity measures based on flowgraph modelling. An ordering of
flowgraphs is given by Bache (see Fenton, 1991). A containment based order
has been defined by Melton (Melton et al., 1990; Fenton, 1992), and a formal
axiomatic validation is presented by Zuse (1992). An experimental axiomatic
testing could be carried out along the framework described in this chapter, e.g.
for maintainability and structural properties.

25 Chapter 6 of this thesis

124 Chapter 7

The main point presented in this chapter is the role of representation axi-
oms in the diagnostic testing (Luce, 1990) of the order of attributes of software
entities. Inconsistencies can be localised. They may hint at anomalies in the
experiments or weaknesses in the theory: they can be used in the development
of the conceptual domain, e.g. in the choice of alternative abstractions. It has
been shown that axiomatic testing may well contribute to the validation of
software metrics, both formally and empirically.

 125

Chapter 8

8. Validation in the Software Metric Development
 Process 26

In this chapter the validation of software metrics will be examined. Two ap-
proaches will be combined: representational measurement theory and a valida-
tion network scheme. The development process of a software metric will be de-
scribed, together with validities for the three phases of the metric development
process. Representation axioms from measurement theory are used both for the
formal and empirical validation. The differentiation of validities according to
these phases unifies several validation approaches found in the software met-
ric's literature.

8.1 Introduction

As can be concluded from the plethora of software metrics, it is rather easy to
conceive some software metric and to obtain numbers with such a metric, for
example in the field of complexity measures. However, it is less clear that all
these metrics are really good measures. To establish the quality of measures
they have to be validated. It has been remarked that there are as many met-
rics as there are computer scientists27. A paraphrase of this statement is that
there are as many types of validation as there are software metrics. Validation
is defined as assessing the extent to which a measure really measures what it
purports to measure (Fenton, 1991). However, this is a rather tautological
formulation (Berka, 1983), and validation has to be operationalized in practice.

26 This chapter is a shortened version of: K.G.van den Berg & P.M. van den Broek (1995), Axio-
matic Validation in the Software Metric Development Process, in: A.Melton (Ed.), Software Meas-
urement: Understanding Software Engineering, London: Thomson, Chapter 10.
27 Ascribed to S.D.Conte

126 Chapter 8

In this chapter, the development of a software metric will be traced with an
explication of different aspects of validation. A simplified framework for soft-
ware measurement will be used (see Figure 8.1).

entities abstractions

m' a m

softwarenumbers numbers

external attribute internal attribute

Figure 8.1 Framework for software measurement

Software entities will be considered: products, processes or resources (Bush &
Fenton, 1990). Data on an external attribute (e.g., maintainability, reusability)
of these entities are collected with some measure m', the quantified criterion
(Melton et al., 1990). This external attribute will be related with some internal
attributes, such as size or structure. The internal attribute is measured with a
metric function m on abstractions of the software entities.

Kaposi (1990) has given an account of the role of measurement theory in
software engineering. Five parts in the planning of measurement are distin-
guished: 1. The problem definition: designating the target objects and key
properties that must be measured. 2. The modelling: a model description of the
target set with reference to the key properties. 3. The forming of the empirical
relational system: describing the model by means of an observable relation be-
tween the objects in terms of the selected key properties. 4. The definition of
the formal relational system: selecting the system in which the measured re-
sults are to be represented. 5. The validation of the results of the measure-
ments.

In this chapter, two approaches will be brought together: the validity net-
work scheme, which resembles Kaposi's analysis, and the representational
measurement theory. In the validity network scheme, aspects of validity are
differentiated for subsequent phases of the research process. In a case study,
axioms from the measurement theory will be validated, both formally and em-
pirically, according to this scheme. The case itself is of interest to researchers
in the field of programming methodology (van den Berg et al., 1993). More
general, the case is used to exemplify the application of representational
measurement theory and aspects of validation in software measurement.

As remainder of this section, the representational measurement will be in-
troduced briefly (section 8.1.1), followed by the validity network scheme (sec-
tion 8.1.2) and the case study (section 8.1.3).

Validation in the Software Metric Development Process 127

8.1.1 The representational measurement theory

The representational approach has been used in software measurement (e.g.,
Baker et al., 1990; Fenton, 1991; Melton, 1990; Bieman et al., 1992; Melton,
1992; Zuse, 1992). Some basic concepts in this measurement theory (Krantz et
al., 1971; Finkelstein & Leaning, 1984; Suppes et al., 1989; Luce et al., 1990)
will be defined according to Roberts (1979). A pivotal concept is the order pre-
serving mapping between relational structures. A short introduction to the
representational measurement theory has been given in Chapter 7.1.

8.1.2 The validity network scheme

According to Brinberg and McGrath (1985), three domains can be distin-
guished in the research process: the substantive domain, the conceptual do-
main and the methodological domain. Each domain is defined by its elements,
the relations between the elements, and the embedding system. The embed-
ding system refers to the set of assumptions within which these elements and
relations are studied.

In software measurement, the substantive domain consists of the empirical
relational structure in the framework (Figure 8.1), together with the embed-
ding system: the actual context of the software entities (e.g., industry, train-
ing). The conceptual domain consists of the other relational structures in the
framework. The embedding system in the conceptual domain is called the
paradigm. For example, structure metrics are based on the assumption of the
compositionality of the structural properties. The methodological domain is
primarily concerned with the mapping of the empirical relational structure
into a numerical relational structure. The embedding system in this domain is
the research strategy, for example the use of field studies or controlled experi-
ments.

The research process itself consists of three phases: the generative or pre-
study phase, the executive or central phase, and the interpretative or generali-
sation phase (Table 8.8).

 domain
phase

substantive conceptual methodological

generative valuation validities
executive correspondence validities

interpretative generalisation validities

Table 8.8 The validity network scheme

128 Chapter 8

In each domain of each phase, there are specific aspects of validity depicted in
the validity network scheme. In the generative phase, the valuation validities
are of primary concern, in the executive phase the correspondence validities,
and in the interpretative phase the generalisation validities. A description of
the various aspects of these validities will be presented in the elaboration of
the case study.

8.1.3 The case study 28

In order to make the discussion of the different aspects of validation concrete,
a case study will be presented related to a specific kind of software entities:
software documentation. Proper documentation presumably has an impact on
important quality aspects, such as maintainability and reusability. There is an
interest in objective data on the impact of documentation. For the program
code, the documentation problem is obvious. Besides documentation in natural
language, there is a tendency to formalise documentation. On procedural level
this can be done with for example preconditions and postconditions. Another
possibility is the use of explicit typing by the programmer. In this case, the
programmer provides information about the type of the objects in the program.
(This is opposed to implicit typing, where the computer carries out the check of
types as can be derived from the code.) This form of documentation not only
may have an impact on the reliability of the software, but also on the compre-
hensibility to human readers of the programs (reviewers, maintenance pro-
grammers). In the case study, documentation in the form of explicit typing will
be considered. The software entities are type expressions in the functional pro-
gramming language Miranda29. Type expressions themselves have a certain
degree of (cognitive) complexity: they are easy or difficult to comprehend. The
comprehensibility will be taken as the external attribute. The internal attrib-
ute is the structure of type expressions. The relationship between the compre-
hensibility of type expressions and their structural properties will be investi-
gated.

8.1.4 Overview

This chapter is organised as follows. First, the generative phase of a software
metric will be described (section 8.2). More details about the software entities
in the case study, the type expressions, will be given. Furthermore, the model-
ling of the structure of type expressions and the measurement of the compre-

28 This is the same case study as described in Chapter 7 of this thesis
29 Miranda is a trademark of Research Software Ltd.

Validation in the Software Metric Development Process 129

hensibility will be elaborated on. The subsequent section 8.3 will deal with the
executive phase in the development of the software metric. The actual collec-
tion of data on the external attribute, the comprehensibility, will be described.
The deterministic and probabilistic testing of axioms will be exemplified. The
structure metric function will be calibrated and used for prediction of the com-
prehensibility. The interpretative phase in the following section 8.4 will elabo-
rate on the generalisation of the results obtained in the foregoing phases. The
final section 8.5 discusses the relation of axiomatic validation presented in this
chapter to other validation approaches.

8.2 The generative phase

Consecutively, the substantive domain, the conceptual domain and the meth-
odological domain in the generative phase will be described. For each domain,
the elements, the relations and the embedding system will be given. This sec-
tion will be concluded with a discussion of the valuation validities in this
phase.

8.2.1 The substantive domain

An outline of the substantive domain implies the phenomena, the observed pat-
terns and the context in 'the real world'. The phenomenon to be studied is the
comprehensibility of type expressions, which has been introduced in Chapter
7.2. For example, the type of a function split is:

 split :: (num → bool) → [num] → ([num],[num])

Several observations have been made with respect to the role of explicit types
in programming, e.g.

Miranda scripts often contain type declarations as these are useful for docu-
mentation and provide an extra check, since the type checker will complain if
the declared type is inconsistent with the inferred one. (Turner, 1986)

Types impose constraints that help to enforce correctness. Typing enforces a
programming discipline on the programmer that makes programs more
structured and easier to read. (Cardelli & Wegner, 1985)

Judicious placement of type signatures is a good idea, since it improves read-
ability and helps bring programming errors to light. (Hudak & Fasel, 1992)

130 Chapter 8

Typing would make the programmer think about what kind of parameters a
function will be used for and, also, would provide more information about
how the program worked to anyone reading or maintaining it at a later
stage. (Kosky, 1988)

Type declarations form an important clue to the understanding of functions in
a program. They give a partial specification of the function: the type of its ar-
guments and the type of the result. The complexity of the type declaration
might give an indication of the complexity of the task to be performed by the
function.

In the 'real world model' (Maki & Thompson, 1973) restrictions will be im-
posed on the 'real world' entities and phenomena. In the case study the type
expressions will be restricted to so called simple type expressions (no type
variables, no type synonyms, no abstract data types: see Chapter 7.2).

Type expressions are studied in the context of programs developed in an
academic environment. It is evident that comprehensibility depends on the ex-
perience of the reader. The case study is carried out with novice Miranda pro-
grammers with corresponding proficiency. Only structural properties of simple
type expressions in Miranda in relation with their comprehensibility to novice
programmers are examined.

8.2.2 The conceptual domain

The second domain, the conceptual domain, implies the concepts, the relations,
and the conceptual paradigm. The concepts will be given in a relational struc-
ture with relations on abstract type expressions. The conceptual paradigm is
the representational measurement theory as described above, and the composi-
tionality of the structural properties, as expressed in structure metrics (Fenton
& Kaposi, 1989).

8.2.2.1 The abstraction

In the conceptual domain a relational structure (A, R1,...,Rn) is defined. Set A
consists of abstract type expressions; R1,...,Rn are relations on abstract type
expressions. In some cases, the corresponding operation of a relation will be
used in the relational structure (cf Roberts, 1979: 41). These operations are
called concatenation operators or constructors.

The mapping of simple type expressions to abstract type expressions is de-
scribed in Chapter 7.3.1. For example, the abstraction of the type of the func-
tion split is:

 F [F [N,B], L N , T {L N, L N}]

Validation in the Software Metric Development Process 131

with respectively: L the list type constructor; F the function type constructor; T
the tuple type constructor; C the standard type char (not used is this example);
N for num and B for bool. Next to the constructors, [...] denotes an ordered list
of abstract type expressions, and {...} denotes a multiset.

There are alternative abstractions discussed in van den Berg et al. (1993).
The choice between abstractions of entities is determined by the actual use of
the abstractions: the establishment of a good correspondence between an in-
ternal attribute based on these abstractions, and an external attribute of the
entities.

8.2.2.2 The containment relation and the metric function

The containment relation on abstract type expressions, denoted by p , has
been defined in Chapter 7.3.2. The containment relation p on type expressions
is a partial order.

For abstract type expressions, a linear structure metric function m is de-
fined in Chapter 7.3.3 :

 m(C) = cC
 m(N) = cN
 m(B) = cB
 m(T{t1,...,tn}) = cT + m(t1) + ... + m(tn)
 m(L t) = cL + m(t)
 m(F[t1,...,tn]) = cF + m(t1) + ... + m(tn)

With this function m, a new relation pm on type expressions is defined as fol-
lows:

 ta pm tb ⇔ m(ta) ≤ m(tb)

The relation pm is an extension of the containment relation. From a measure-
ment theorem it has been shown that ((texp ,pm), (Re, ≤), m) is an ordinal
scale.

An abstraction of type expressions and a containment relation on abstract type
expressions have been defined. An extension of this relation derived from a
structure metric function provides measurement of the internal attribute
structure of type expressions on an ordinal scale. This allows the investigation
of a correspondence of the extension with the empirical order as given by the
quantified criterion, which also maps on (Re,≤). In the following section, the
measurement of the external attribute, i.e. the comprehensibility of type ex-
pressions, will be discussed.

132 Chapter 8

8.2.3 The methodological domain

In this section, the methodological domain - which comprises the measures,
comparison techniques and the research strategy - is described. The collection
of data on the external attribute of the software entities will be addressed. The
external attribute has to be operationalized by some measure.

There are several approaches to the measurement of comprehensibility of
programs. In the case study, one measure has been chosen for the comprehen-
sibility of type expressions (van den Berg et al., 1993): the time in seconds
needed for a subject to read a given type expression and to conceive and type-
write an instance of an object with exactly this type in the 'standard' pro-
gramming environment. The time between showing the type expression on
screen and the completion of the answer is measured automatically. After-
wards, with the type checker of the programming system, the answer is
marked as correct or incorrect.

The strategy for data collection is that of controlled experiments, as op-
posed to for example field studies. Controlled experiments have been chosen to
have a better control over the instances of type expressions, and to have better
control over the conditions under which the comprehensibility is measured. If
a vector of measures is used, one has to compare the relative merit of each
measure. This is not carried out in this exploratory study.

8.2.4 Validities in the generative phase

The validities in the generative phase are valuation validities: establishing the
'value' of elements, relations and embedding systems in each domain. In all
domains there are validation criteria, which may be mutually conflicting. They
are all desirable, but they cannot be maximised at the same time (Brinberg &
McGrath, 1985).

Valuation Validition in the Substantive Domain

Three general criteria for values in the substantive domain are: the effective-
ness, the cost and the quality. The validity of the chosen phenomena and pat-
terns have to be considered: e.g., the value of documentation in software devel-
opment; the value of type declarations in software documentation; the value of
comprehensibility of type expressions. Furthermore: what is the expected im-
provement of the software quality by the use of good documentation; what is
the cost of good documentation; what is the value and the cost of quantitative
assessment of documentation quality. Finally, what is the 'value' of the chosen
context with restrictions on the real world to obtain the real world model. On
one hand there are restrictions on the documentation: software documentation

Validation in the Software Metric Development Process 133

- formal documentation - type declarations - simple type expressions; on the
other hand on the programmers: academia - novice programmers.

Valuation Validition in the Conceptual Domain

The three criteria in the conceptual domain are: parsimony, the use of fewer
concepts and fewer relations in the interpretation of the problem; scope, the
range of the problem being covered by the concepts (content validity); and dif-
ferentiation, the amount of detail of the problem that can be interpreted with
the concepts (construct validity). A prerequisite value is the consistency of the
concepts and relations.

Even in a small scale case study as presented in this chapter, there are
many concepts introduced and used: from the representational measurement
theory, from programming theory to describe type expressions and the abstrac-
tion of type expression with the containment relation and the metric function.
A size metric instead of the structure metric would probably require fewer con-
cepts. The formal validation comprises the check on consistency of the concepts
used. The scope and differentiation of the concepts are apparent in the given
mapping rules from the real world model to the abstractions.

Valuation Validition in the Methodological Domain

In the methodological domain, the three mutually conflicting criteria are: pre-
cision, i.e. the accuracy of the measurement and the amount of control of the
variables; realism of the context in which the information is obtained in rela-
tion to which that information is intended to apply or to be used; and gener-
alisability with respect to the chosen entities and attributes in the problem.
The chosen research strategy has to result in reliable data on the phenomena.
In this exploratory study, controlled experiments have been chosen. If data are
to be applied, e.g. in metric tools in industrial practice, field studies will be re-
quired. The value of a measure has to be established by comparison with other
measures (the criterion validity). Only one measure for the comprehensibility
has been used in the case study. The realism of the context in this study can be
traced back from the given abstractions and restrictions on the real world.

The analysis of data will be derived from the axioms that have been stated
in the conceptual domain in the previous section. In the executive phase, it has
to be established whether or not comprehensibility of type expressions can be
described in a consistent relational structure, in order to resolve the scale of
measurement and to establish the correspondence with relations in the con-
ceptual domain.

134 Chapter 8

8.3 The executive phase

The first step in this phase is the collection of quantitative data for the ob-
served phenomena as described in the previous section. The measure will be
used as a criterion for the empirical relation between the entities in the given
context. Subsequently, the data obtained with this measure will be analysed
and the correspondence will be established with the relations in the conceptual
domain. The section will be concluded will a discussion of the correspondence
validities in this phase.

The experiments and the empirical order have been described in Chapter
7.4. The following approaches in the analysis of the data have been used.
Firstly, a global analysis has been given based on the average time measured
for each type expression (Chapter 7.4.1). Secondly, an axiomatic analysis of the
preference of each subject between pairs of type expressions has been de-
scribed with a test on intransitive group preferences (Chapter 7.4.2.1). Finally,
an axiomatic analysis based on the relative frequencies of these preferences
has been considered with a test on stochastic transitivity (Chapter 7.4.2.2). In
the same section, measurement errors have been treated with a threshold
probability and semiorders.

From this analysis of the empirical order of type expressions with respect to
the external attribute comprehensibility, it can be concluded that -- for subsets
of type expressions -- the measurement of time to find an instance of a given
type, results in an ordinal scale.

8.3.1 Calibration

For each of the type expressions in the data set, an expression can be derived
from the metric function m, as defined in section 8.2.2.2. For example, the
metric value for the abstraction of the type expression of the function split
yields the expression

 1 × cT + 2 × cF + 3 × cL + 4 × cN + 1 × cB + 0 × cC

This expression can be equated to the average measured time for the correct
responses. With linear regression analysis of these equations for each type ex-
pression in the experiment, the calibration of the constants cT, cF, cL, cN, cB, cC
has been obtained (cf. Chapter 6.4.3).

8.3.2 Prediction

A second data set has been obtained with subjects different from the first set,
and with different type expressions. The calibrated metric function of the pre-

Validation in the Software Metric Development Process 135

vious section is used to calculate the time for each type expression. The Pear-
son product-moment correlation coefficient (Guilford & Fruchter, 1978) be-
tween the measured values and the calculated values is 0.80. The related fore-
casting efficiency is 40%; i.e. a reduction in variance of the predicted compre-
hensibility is achieved by using the calculated metric value. It is also possible
to compare the ranks of the measured and calculated values. The Spearman
rank correlation coefficient is 0.74. From these results it can be concluded that
there is a reasonable good agreement between the measured and predicted
values in the experiment (cf. Chapter 6.4.3).

8.3.3 Discussion

The comprehensibility of simple type expressions has been operationalized as
a time measurement. The ranking of the average time is in agreement with a
simple extension of the partial order obtained for the corresponding abstract
type expressions, despite a rather large standard deviation in the measured
values, as has been described in Chapter 7.4. Axiomatic analysis has been
used to localise inconsistencies in the experimental data: e.g. intransitive
group preference. An ordinal measure has been calculated for a consistent data
set. Incomplete data sets have been analysed with a probabilistic consistency
axiom: the weak stochastic transitivity. An ordinal measure has been estab-
lished based on these probabilistic data. Measurement errors have been
treated with a threshold probability and semiorders. The order obtained in this
way shows a deviation of the previous order and appears to have more ties.
Calibration of the metric function, as defined for abstract type expressions, has
been carried out with standard regression analysis. The prediction of the com-
prehensibility with this calibrated metric function shows a good agreement
with the measured values from an independent data set.

8.3.4 Validities in the executive phase

In the executive phase, the validity of the correspondence between the different
relational structures has to be established: the correspondence validities.
Moreover, the experimental design used in the collection of data has to be vali-
dated (design validity). The main emphasis of the case study has been on the
correspondence between the relational structures as given in Figure 8.1. The
correspondence between the empirical relational structure with the compre-
hensibility of type expressions and the numerical relational structure of the
time measurement has been established. This correspondence has been vali-
dated by examining the representation axioms from measurement theory. Fur-
thermore, the correspondence between the two numerical relational structures

136 Chapter 8

has been validated by the calibration and prediction with the metric function.
From this analysis based on standard statistical techniques, it has been con-
cluded that there is a good correspondence between the empirical relational
structure and the formal relational structure with abstract type expressions
and the containment relation. The correspondence of real world software
documentation with the comprehensibility of simple type expressions has not
been validated in the case study. This will be considered in the following
phase.

8.4 The interpretative phase

In this follow-up phase, the third phase in the development process, the set of
findings obtained in the executive phase are interpreted. Furthermore, the re-
peatability of the findings, the range of variation of elements and relations
(from each of the domains) over which the set of findings holds, and bounda-
ries beyond the set of findings do not hold, are explored.

The analysis in this case study has been restricted in many ways: the sub-
jects in the experiment (novice programmers), and the type expressions (no
grouping brackets, no type variables, no type synonyms). Furthermore, alter-
natives of the abstraction function are not considered. Moreover, only one
comprehensibility measure has been used. This leads to questions of generali-
sation validities.

8.4.1 Validities in the interpretative phase

The validities in the interpretative phase are generalisation or robustness va-
lidities. For each domain this validity is the extent to which the scope and lim-
its of a set of empirical findings can be specified with respect to the elements
and relations in that domain. Generalisation validities for each domain ad-
dresses the following aspects. Replication: would the same set of findings occur
if the study is repeated with the same set of elements and relations? Conver-
gence: would the same set of findings occur if certain facets of elements and re-
lations are varied systematically? Differentiation or boundary search: if a dif-
ferent set of findings occurs with certain facets of elements and relations var-
ied systematically, can these differences be explained with the relational sys-
tem? It is not only important to look for the conditions under which the find-
ings will fit the hypothesis, the invariance, but also try to identify and explain
the conditions under which the findings disconfirm the hypothesis, the failures
of invariance's.

To give some examples: If another measure for comprehensibility had been
used, would the same order be found? Would a size metric instead of the struc-

Validation in the Software Metric Development Process 137

ture metric yield a good correspondence with comprehensibility? Is there an
influence of the recognition of the type declaration of often used standard func-
tions? What is the influence of programming proficiency on the order of type
expressions: novices versus experts?

Another important aspect is the generalisation of the approach outlined in
this chapter to other software entities with other attributes. There seems to be
at least one important field where this approach could be successful. This is
the domain of complexity measures based on flowgraph modelling. An ordering
of flowgraphs is given by Bache (see Fenton, 1991). A containment based order
has been defined by Melton (Melton et al., 1990; Fenton, 1992), and a formal
axiomatic validation is presented by Zuse (1992). An experimental axiomatic
validation could be carried out along the framework described in this chapter,
e.g. for maintainability and structural properties.

There is also a questioning of the conceptual paradigm chosen in this chap-
ter: representational measurement theory. Although this approach has a wide
adherence in especially natural science, there are also meta-theoretical limita-
tions, among others the absence of criteria to chose between alternative repre-
sentations (Roberts, 1979). Another critical observation is made by Guttman:

There is much to be learned from exploring axioms and their formal conse-
quences. But there remains the danger of seeking data merely to fit axioms.
(Guttman, 1971; cited in Schwager, 1988).

8.5 Relation with other validation approaches

There are two types of conclusions: firstly, on the topic of the case study itself,
i.e. the comprehensibility of type expressions; secondly, on the validation ap-
proach as exemplified by the case study. In regard to the first point: some con-
clusions have been given in the discussion section of the executive phase and
in the interpretative phase. As has been described in Chapter 10, the main
point is the role of representation axioms in the diagnostic testing (Luce, 1990)
of the empirical order of the comprehensibility of type expressions. Inconsis-
tencies can be localised. They may hint at anomalies in the experiment or
weaknesses in the theory: they can be used in the development of the concep-
tual domain, e.g. in the choice of alternative abstractions of type expressions.

Other approaches to the validation of software metrics can be found in the
literature. Gustafson et al. (1992) present a classification of validation studies
of software metrics. In their view, validation checks the predictive abilities of a
measure against a dependent variable, while verification checks the reason-
ableness of the measure. For each approach it is indicated: whether verifica-

138 Chapter 8

tion or validation is achieved, whether the approach produces a dependent
variable, whether there is an underlying theory used or produced, and whether
the results of the approach are generalizable to other data or environments.
They distinguish the following (not disjunct) approaches: 1. The shotgun ap-
proach: using statistical correlation techniques between many measures. 2.
The standard dependent variable approach: based on a theory with data from
completed projects. 3. The controlled-experiments approach: based on a theory
with data from experiments. 4. The verification approach: using formal proper-
ties of measures. 5. The exploratory approach: in which a large set of meas-
urements is grouped with factor analysis. 6. The intuitive approach: in which
measurements are correlated with judgement of experts. 7. The goal-oriented
approach: in which a particular property has to be optimised. 8. De facto ap-
proaches, which fail to be classified in one of the previous categories. They con-
clude that the lack of planning for validation in the development of measures
will result in measures that have limited usefulness and questionable validity.

Schneidewind (1992) presents a methodology for validating software met-
rics, from the point of view of the metric user. He discusses six validity crite-
ria: 1. Association: the extent to which a variation in a software attribute is
explained by the measure. 2. Consistency: the strength of the rank correlation
between a software attribute and a measure. 3. Discriminative power: the
strength of classification of a software attribute with a measure. 4. Tracking: a
monotonic relation between attribute and measurement. 5. Predictability: the
accuracy of predicting an attribute with a measure. 6. Repeatability: the suc-
cess rate of validating the measure for an attribute. The six criteria support
the three functions of measurement: assessment, control and prediction. The
criteria provide a rationale for the validation, the selection and application of
metrics.

As compared with these approaches, in this chapter the emphasis is on the
validation of representation axioms in the different phases of the software
metric development process, both formally and empirically. This approach is
especially useful in a domain with a weak theoretical foundation. Validities
have been differentiated in the validity network scheme. The criteria listed by
Schneidewind can be found in this network. The development process is usu-
ally not a linear process, but will be iterated in a spiral development. The ap-
proaches distinguished by Gustafson et al. (1992) may have their own merits
in different phases of this spiral process. A standard on validation issues in
software measurement is urgently required (cf. American Psychological Asso-
ciation, 1954).

 139

Chapter 9

9. Programmers' Performance on Structured
 versus Nonstructured Function Definitions 30

A control-flow model for functional programs is used in an experimental com-
parison of the performance of programmers on structured versus nonstructured
Miranda function definitions. The experimental set-up is similar to the Scanlan
study (1989). However, in the present study, a two-factor repeated measures de-
sign is used in the statistical analysis. The control-flow model appears to be
useful in the shaping of the experiment. A significantly better performance has
been found for structured function definitions on both dependent variables: the
time needed to answer questions about the function definitions and the propor-
tion correct answers. Moreover, for structured function definitions, a counter-
intuitive result has been obtained: there are significantly fewer errors in larger
definitions than in smaller ones.

9.1 Introduction

There is a long standing discussion on structured programming in the litera-
ture (e.g. the survey of Vessey & Weber, 1984). Most of this research has been
carried out in the domain of imperative programming. This chapter will pre-
sent an experiment on programmers' performance in the domain of functional
programming for structured versus nonstructured function definitions. The
set-up of this experiment is similar to the Scanlan study (1989) in his compari-
son of structured flowcharts and pseudocode. However, our experimental de-
sign and statistical analysis are different from this study: these differences
will be explained in the subsequent sections. The characterisation of the struc-
ture of function definitions is based on a control-flow model as defined in a

30 K.G. van den Berg & P.M. van den Broek (1996), Programmers' Performance on Structured
versus Nonstructured Function Definitions, Information and Software Technology 38(7) pp 477-
492

140 Chapter 9

previous paper (van den Berg & van den Broek, 1995a) (Chapter 5 of this the-
sis). The framework for experimentation in software engineering (Basili et al.,
1986) will be used in the following outline of the present study.

The motivation of this study has been indicated above: an experimental
comparison of programmers' performance on structured versus nonstructured
‘programs’ in the domain of functional programming. The actual objects in this
study are Miranda function definitions (Turner, 1986). The attribute structure
of function definitions will be defined in terms of a control-flow model (van den
Berg et al., 1995a). The control-flow in function definitions is determined by
patterns and guards, as will be described in sections 9.2 and 9.3.

The purpose of this study is to validate empirically some programming style
rules on the use of guards and patterns in function definitions with respect to
programmers' performance.

Pattern matching is one of the cornerstones of an equational style of defini-
tion; more often than not it leads to a cleaner and more readily understand-
able definition than a style based on conditional equations [with guards].
(Bird & Wadler, 1988)

One perspective in this study on programmers' performance is that of a formal
technical review of coding or a code walkthrough: i.e. inspection of code written
by another programmer (Pressman, 1994). Programmers have to comprehend
the code and make statements about the behaviour of the program. The do-
main of this study can be characterised as programming-in-the-small by novice
programmers (Computer Science students). The scope of the study is that of a
single programmer working on a single program-unit (a Miranda function
definition).

In the following section, patterns and guards in function definitions are de-
scribed in more detail, and in section 9.3 the control-flow model is recapitu-
lated. In sections 9.4 - 9.7 the experiment will be described, with the results in
section 9.8, followed by a discussion and some conclusions.

9.2 Function definitions

A description of patterns and guards in Miranda function definitions is given
in Peyton Jones (1987). An example is given in Table 9.1: a definition of the
function split (the line numbers have been added). The function split returns,
for given a predicate, i.e. a boolean function with type (* → bool), and a list
with type [*], a tuple with two components: the first component is the list with
elements satisfying the predicate and the second component is the list with
elements not satisfying the predicate. In line 1, the type of the function split is

Structured versus Nonstructured Function Defintions 141

given: it is a polymorphic function (a star * denotes a type variable). For ex-
ample, evaluation of the expression split even [2,4,7,4] yields the tuple
([2,4,4],[7]).

 split :: (* -> bool) -> [*] -> ([*],[*]) 1
 split p [] 2
 = ([],[]) 3
 split p (x:xs) 4
 = (x : ys, zs), if p x 5
 = (ys, x : zs), if ~ (p x) 6
 where (ys,zs) = split p xs 7

Table 9.1 Definition of the function split

The second argument of the function split is a list. In the first clause of the
definition (line 2-3), the pattern [] for an empty list is used for the selection of
this clause. In the second clause (line 4-7), the non-empty list pattern (x:xs) is
used. In the second clause there are two cases, one with the guard p x (line 5),
the other with the guard ~ (p x). In the local definition on line 7, the tuple
(xs,ys) is defined in terms of a recursive call of split.

The patterns in this definition are disjoint: if one pattern matches, then
there is no other pattern that will match. E.g., if the actual argument list
matches the pattern [] then no other pattern will match, and the same applies
to pattern (x:xs). Moreover, these patterns are exhaustive: for any argument
there will be a pattern that will match. E.g., a list-argument is either empty
and matches the pattern [], or it is non-empty and matches the pattern (x:xs).
The guards in this definition are disjoint as well: if p x is True then no other
guard is True; moreover, these guards are exhaustive: either p x is True or ~(p
x) is True.

In this definition of split, the meaning of the definition is independent of
the textual order of the clauses and cases. However, quite commonly, the
meaning depends on the order of the clauses and the cases. Moreover, guards
in Miranda function definitions may interact with pattern matching. There are
few examples in the literature to demonstrate the latter.

In the first example, the function funnyLastElt returns the first negative
element of its argument list, or if there is no such element, it returns the last
element of this list (Peyton Jones, 1987) (see Table 9.2). If an argument list is
not empty, then the first clause is selected and the guard x<0 will be evalu-
ated. If this condition is True, the function returns x; otherwise (because there
is no other guard), the following pattern (x:[]) will be checked, and so on. The

142 Chapter 9

meaning of the definition depends on the order of the clauses: e.g., if one ex-
changes the first clause with the last, the function does not satisfy the given
specification anymore.

 funnyLastElt :: [num] -> num
 funnyLastElt (x:xs) = x, if x<0
 funnyLastElt (x:[]) = x
 funnyLastElt (x:xs) = funnyLastElt xs

Table 9.2 Definition of the function funnyLastElt

Another example is given by Holyer (1991) with an (unusual) definition of the
Miranda standard function drop (see Table 9.3). The function is specified as
follows: drop n xs removes the first n elements from the argument list xs; if n
is not an integer, there will be a program error; if n is negative the argument
list will be returned.

 drop :: num -> [*] -> [*]
 drop n xs = error "fractional", if ~ integer n
 = xs, if n<=0 \/ xs=[]
 drop (n+1) (x:xs) = drop n xs

Table 9.3 Definition of the function drop

In the second clause of this definition, there is a matching on the list pattern
(x:xs) and on the integer pattern (n+1). The meaning of the definition depends
on the order of the clauses as well as of the order of the guards.

The interaction of patterns and guards implies that there have to be rules
about the operational semantics. As stated above, for Miranda these rules are:
patterns in a clause are evaluated from left to right, and guards in textual or-
der; and clauses are evaluated in textual order (Peyton Jones, 1987). Obvi-
ously, there is an operational bias in the language design of Miranda (Petre &
Winder, 1990). The control-flow model (van den Berg & van den Broek, 1995a)
captures the operational semantics of function definitions.

Some programming style rules with respect to use of patterns and guards in
function definitions can be found in the literature, each with a different
strength:
1. Use total function definitions (both exhaustive patterns and exhaustive

guards: Plasmeijer & van Eekelen, 1994)

Structured versus Nonstructured Function Defintions 143

2. Use order independent clauses in function definition (Bird & Wadler, 1988;
Peyton Jones, 1987)

3. Use exhaustive patterns (Bird & Wadler, 1988)
4. Use disjoint patterns (Holyer, 1991)
5. Use order independent alternatives for each clause (Bird & Wadler, 1988)
6. Use exhaustive guards (Plasmeijer & van Eekelen, 1994)
7. Use disjoint guards (Plasmeijer & van Eekelen, 1994)
One of such rules (see section 9.4) is the subject of experimental validation as
will be described in the subsequent sections. First, the control-flow model will
be recapitulated.

9.3 Control-flow model

Flowgraphs are used for the modelling of control-flow in imperative programs
(Fenton, 1991). The nodes in the directed graphs correspond to statements in
the programs, whereas the edges from one node to the other indicate a flow of
control between corresponding statements. The stop node in a flowgraph has
outdegree zero, and every node lies on some path from the start node to the
stop node. The nodes with outdegree equal to 1 are called procedure nodes; all
other nodes are termed predicate nodes. E.g., an elementary action is modelled
as flowgraph P1 in Figure 9.1a; the if-then construct in a program is modelled
as flowgraph D0 in Figure 9.1b; the if-then-else construct is modelled as flow-
graph D1 in Figure 9.1c.

stop node

start node

D

4

7

2 5 6

4

7

5

2

1

D 1 (D 0)1D

1

3

0

b c d

D 0

D 1

e

P

1

2

1

a

6

3

Figure 9.1 Elementary flowgraphs and decomposition tree

Flowgraphs can be concatenated (sequencing) to a new flowgraph; and flow-
graphs can be nested on each other. An example of nesting D0 onto D1 at node
6 in Figure 9.1c, is given in Figure 9.1d. This is denoted as D1(D0), in which is
abstracted from the node onto which is nested. Associated with any flowgraph
is a decomposition tree which describes how the flowgraph is built by sequenc-

144 Chapter 9

ing and nesting elementary flowgraphs, such as D0 and D1. The decomposition
tree of the flowgraph in Figure 9.1d is depicted in Figure 9.1e.

The operational semantics of Miranda function definitions is captured in the
control-flow model (van den Berg & van den Broek, 1995a). For example, the
control-flow graph for the function definition split is given in Figure 9.2.

[]

p x

patterns guards expressions stop

T

T

F

F

F

T

T(x:xs)

~ (p x)

F
e1

e2

e3

e1 = ([] , [])

e2 = (x : ys, zs)

e3 = (ys, x : zs)

Figure 9.2 Annotated control-flow graph of the function split

The four vertical lines indicate the kind of nodes in these flowgraphs: predicate
nodes (outdegree 2) for patterns and guards, procedure nodes (outdegree 1) for
the expressions, and finally the stop node (outdegree 0). For the predicate
nodes, the True (T) and False (F) branches are indicated. Note that the lower
(False) branch starting at the pattern (x:xs) is infeasible because either the
pattern [] or the pattern (x:xs) will succeed: these two patterns are exhaustive.
The same applies to the lower (False) branch starting at the guard ~(p x): in
any case, one of these guards will give the value True. However, in this model
is abstracted from the actual content of the patterns and guards.

Flowgraphs can be uniquely decomposed into a hierarchy of (inde-
composable) prime flowgraphs. E.g., the decomposition of the flowgraph given
in Figure 9.2 is D1(D0(D1(D0))). In this case, the depth of decomposition is 4.

Structured versus Nonstructured Function Defintions 145

We will give some additional definitions, as will be used in the description of
the experiment in the following section. A path in a flowgraph is a sequence of
consecutive nodes from the start node to the stop node. A D-structured path is
given by a sequence of patterns followed by a sequence of guards, then possibly
an expression node, and then the stop node. An X-structured path31 is a path
that is not D-structured: i.e., a sequence in which a guard is followed by a pat-
tern. (In flowgraphs as drawn in Figure 9.2 and Figure 9.3, an X-structured
path can be identified by an edge directed from right to left.) A D-structured
path and an X-structured path are called similar if the D-structured path is a
permutation of the X-structured path. A function definition is structured (D-
structured) if all paths in its flowgraph are D-structured; otherwise the defini-
tion is nonstructured (X-structured).

Function definitions are called comparable if their flowgraphs contains the
same predicate nodes (patterns, guards), and the expression nodes represent
simple numeric constants. (Comparable functions need not to be semantically
equivalent). Two example scripts with comparable definitions are given in
Table 9.4.

 || script 101
 f :: [num] -> num

 f (x:y:z:zs) = 1, if x>2
 f (x:xs) = 2
 f xs = 3

 top = f [1,2,3]

 || script 103
 f :: [num] -> num

 f (x:y:z:zs) = 1
 f (x:xs) = 2, if x>2
 = 3, otherwise
 f xs = 4

 top = f [3,4]

Table 9.4 An X-structured function definition in script 101 and a comparable
D-structured function definition in script 103

31 X refers to a prime other than D0 and D1

146 Chapter 9

The flowgraphs of these function definitions32 are given in Figure 9.3. The
function f in script 101 is X-structured: it contains an X-structured path (with
the edge from the guard x>2 to the pattern x:xs). The function f in script 103 is
D-structured: it contains only D-structured paths.

a. flowgraph of function f in script 101

b. flowgraph of function f in script 103

x>2
patterns guards expressions stop

T
F

F T

Tx:y:z:zs
F

x:xs

1

2

3

x>2

patterns guards expressions stop

TFF
T

Tx:y:z:zs
F

x:xs

1

2

3

4

Figure 9.3 Flowgraphs of functions in script 101 and 103

The evaluation of top = f [1,2,3] in script 101 results in an X-structured
path with the following sequence of nodes (length of path = 6):

 < start node,(x:y:z:zs), x>2,(x:xs), 2, stop node >

The evaluation of top = f [3,4] in script 103 results in a D-structured path:

 < start node,(x:y:z:zs),(x:xs), x>2, 2, stop node >

Moreover, these two paths are similar: the path in script 101 is a permutation
of the path in script 103.

The hypothesis is that programmers' performance on the D-structured path is
better than on the similar X-structured path, and hence (this is our assump-
tion) that structured function definitions are better than comparable nonstruc-
tured function definitions. In the subsequent section, criteria for programmers'
performance are established, and an experiment is described to test this hy-
pothesis.

32 The numbers refer to the script numbers used in the experiment (see section 9.6)

Structured versus Nonstructured Function Defintions 147

9.4 Experiment

In this section the design of the experiment will be described. The aim of the
experiment is to validate the following programming style rule: ‘Use structured
function definitions instead of nonstructured ones’. In the experiment we will
test the performance of programmers on structured versus comparable non-
structured function definitions. The experimental set-up is similar to the one
used by Scanlan (1989) in the comparison of structured flowcharts and pseu-
docode. However, the experimental design and the statistical analysis pre-
sented here are different. These differences will be brought up in the subse-
quent sections. In section 9.4.1 and 9.4.2, we will consider the independent and
dependent variables in our experiment, followed by a description of the ex-
perimental design (9.4.3), the statistical model (9.4.4) and the hypotheses
(9.4.5).

9.4.1 Independent variables

The two independent variables in the experiment are the following:
• The Size of a script with the function definition and the top expression. The

three levels of Size, i.e. Small, Medium and Large, are characterised by the
length of the path belonging to the top expression, the net lines of code of
the scripts33 (NLOC), and some control-flow metrics (van den Berg & van
den Broek, 1995a) (see Table 9.5). Despite the relatively small number lines
of code, the function definitions - especially the larger ones - are rather com-
plicated (e.g., McCabe’s cyclomatic complexity number and the depth of de-
composition).

Metric

Level
path

length
NLOC #nodes McCabe's

cycl comp
depth of

decomposition
Small 6 5-6 7-8 4 2-3
Medium 9 8-9 13-14 7 4-6
Large 12 13-14 21-22 11 6-9

Table 9.5 Properties of Small, Medium and Large function definitions

• The Structure of the function definition in a script. The two levels of Struc-
ture are the nonstructured function definition (X-structured) and the struc-
tured function definition (D-structured), as described in section 9.3.

33 The blank lines and comment lines are not counted; the scripts also contain the type of the func-
tion and the top level expression (cf. Table 9.4)

148 Chapter 9

9.4.2 Dependent variables

The basic condition in the experiment is: no time pressure, i.e. the subjects are
allowed to spend as much time as they need to answer the questions (cf.
Scanlan, 1989).

The most basis task [in computer programming], and yet in some ways the
hardest to measure, is program comprehension. (Moher & Schneider, 1982)

The dependent variables in this experiment are two criteria on programmers'
performance:
• the time to answer (Time), i.e. the number of seconds the subjects viewed

the script and spent answering the question about the script. This is a con-
tinuous random variable.

• the correctness of the answer (Correctness), i.e. the answer given by the sub-
ject about the script is either correct or wrong. This is a binary random
variable.

In section 9.6, the questions about the scripts used in the experiment are de-
scribed in more detail.

9.4.3 Experimental design

The experimental design will be considered as a two-factor design with two
dependent variables and six treatments. A treatment corresponds to a combi-
nation of factor levels. The first factor is the Structure with two levels: struc-
tured (D) and nonstructured (X). The second factor is the Size with three levels:
Small (S), Medium (M) and Large (L). The design has been given schematically
in Table 9.6.

Factor Size
 Levels Small

S
Medium

M
Large

L

Structure

Nonstructured
X

treatment
SX

treatment
MX

treatment
LX

 Structured
D

treatment
SD

treatment
MD

treatment
LD

Table 9.6 Experimental design with factors, levels and treatments

Each treatment in the design will be given to each subject (as in the Scanlan
study, 1989). The subjects are viewed as a random sample from a population.
This is a two-factor experiment with repeated measures on all treatments,

Structured versus Nonstructured Function Defintions 149

equal sample sizes, random subject effects and fixed factor effects (Neter et al.,
1990). (This is contrary to the one-factor repeated-measures design as con-
ceived by Scanlan).

Factor Size
 Levels Small

S
Medium

M
Large

L

Structure

Non-
structured

X

µSX =
mean for
treatment

SX

µMX =
mean for

treatment
MX

µLX =
mean for

treatment
LX

µ.X =
mean for

factor level
X

Structured

D

µSD =
mean for
treatment

SD

µMD =
mean for

treatment
MD

µLD =
mean for

treatment
LD

µ.D =
mean for

factor level
D

 µS. =
mean for

factor level
S

µM. =
mean for

factor level
M

µL. =
mean for

factor level
L

µ.. =
overall
mean

Table 9.7 Experimental design with treatment means and factor level means

The number of levels for the factor Size is a (a=3); the number of levels for the
factor Structure is b (b=2). The treatment mean at level j of Size and level k of
Structure will be denoted by µjk with j ∈ {S, M, L} and k ∈ {X, D}.

We will use the following point notation for the factor level means:
 µj. = Σk µjk / b and µ.k = Σj µjk / a
The overall mean is denoted by µ.. with
 µ.. = Σj Σk µjk / ab = Σk µj. / a = Σj µ.k / b
The denotation for the treatment means and the factor level means are given
in Table 9.7.

9.4.4 Statistical model

The following model will be used in the statistical analysis of the experimental
design described in the previous section (Neter et al., 1990).

Let yijk be the observed value on the dependent random variable Yijk for
subject i (i ∈ [1..n]) for the factor A (here Size) at level j and the factor B (here
Structure) at level k.

150 Chapter 9

Then, we assume the following repeated measures model34 with:
 Yijk = µ.. + ηi + αj + βk + γjk + εijk
In this model, we assume that:
 µ.. is the overall effect
 ηi is the random effect of subject i
 αj is the fixed effect of factor A (Size) at level j
 αj = µj. - µ.. with j ∈ {S,M,L}
 βk is the fixed effect of factor B (Structure) at level k
 βk = µ.k - µ.. with k ∈ {X,D}
 γjk is the interaction effect of factor A at level j and factor B at level k
 γjk = µjk - µj. - µ.k + µ.. with k ∈ {X,D} and j ∈ {S,M,L}
 εijk is the random error effect
with:
 µ.. is a constant
 ηi are independent and normally distributed N(0, σ2 η)
 αj are constants with Σk αj = 0 for all j
 βk are constants with Σj βk = 0 for all k
 γjk are constants with Σj γjk = 0 for all k and Σk γjk = 0 for all j
 εijk are independent and normally distributed N(0, σ2)
 ηi and εijk are independent
 i ∈ {1,...,n}; j ∈ {S, M, L}; k ∈ {X, D}
The properties of Yijk are the following:
 the expected value E(Yijk) = µjk = µ.. + αj + βk + γjk
 the variance var(Yijk) = σ2η + σ2

 the covariance cov(Yijk ,Yij’k’) = σ2η with not both j = j' and k = k'
Thus, this repeated measures model assumes that the variable Yijk have con-
stant variance, and that any two treatment observations for the same subject
in advance of the random trials have constant covariance. Any two observa-
tions from different subjects in advance of the random trials are independent.
Finally, all random variables are assumed to be normally distributed. Once the
subjects have been selected, repeated measures model assumes that all of the
treatment observations for a given subject are independent - that is, that there
are no interference effects, such as order effects or carry-over effects from one
treatment to the next.

9.4.5 Hypotheses

The initial three hypotheses to be tested in this study are the following:
whether or not there is an interaction effect of the factors Structure and Size

34 Only the main factor effects and the interaction effect between the main factors are considered

Structured versus Nonstructured Function Defintions 151

on each of the two dependent variables (Time and Correctness), and whether or
not there is a main effect of each of these factors. There is interaction if the ef-
fect of the factor Structure on a dependent variable depends on the level of the
factor Size, and vice versa. In Table 9.8, these null hypotheses with their al-
ternatives are stated in terms of the model; H0i denotes the i-th null hypothe-
sis, and Hai denotes the corresponding i-th alternative hypothesis. The level of
significance α = 0.05.

Factor Effects Null Hypothesis H0 Alternative Hypothesis Ha
Structure × Size
Interaction Effects

H01: all γjk = 0 Ha1: not all γjk equal zero

Size
Main Effects

H02: all αj = 0 Ha2: not all αj equal zero

Structure
Main Effects

H03: all βk = 0 Ha3: not all βk equal zero

Table 9.8 Hypotheses on Factor Effects

Hypotheses on nine selected pairwise comparisons of treatment means on each
of the two dependent variables will be tested as well, in particular if there is
interaction. The specific null hypotheses, with the alternatives, are given in
Table 9.9.

 Treatment Null
Hypothesis

Alternative
Hypothesis

 Size at level Small H0
4 : µSX-µSD = 0 Ha

4 : µSX-µSD ≠ 0

Structure Size at level Medium H0
5 : µMX-µMD = 0 Ha

5 : µMX-µMD ≠ 0

 Size at level Large H0
6 : µLX-µLD = 0 Ha

6 : µLX-µLD ≠ 0

Size

Structure at level X

H0
7 : µMX-µSX = 0

H0
8 : µLX-µMX = 0

H0
9 : µLX-µSX = 0

Ha
7 : µMX-µSX ≠ 0

Ha
8 : µLX-µMX ≠ 0

Ha
9 : µLX-µSX ≠ 0

Structure at level D

H0
10: µMD-µSD = 0

H0
11: µLD-µMD = 0

H0
12: µLD-µSD = 0

Ha
10: µMD-µSD ≠ 0

Ha
11: µLD-µMD ≠ 0

Ha
12: µLD-µSD ≠ 0

Table 9.9 Hypotheses on Treatment Means for the variable Time

The tests are carried out on the same data set, and therefore the tests are de-
pendent. We will set a family level of significance of α = 0.10. The individual

152 Chapter 9

significance level for each hypothesis will be derived from this value by using
one of the methods for multiple comparisons (Neter et al., 1990).

9.5 Subjects

All subjects in the experiment are first and second year students at the Uni-
versity of Twente in Computer Science or Business Information Technology: in
total 103 students participated in the experiment. They all completed success-
fully at least one course on Functional Programming (Joosten et al., 1994).

9.6 Objects

The objects in the experiments are Miranda scripts with a function definition
and a top expression. For each Size (Small, Medium and Large), an X-version
of a script and a corresponding D-version is constructed (see Table 9.10).

Nonstructured or X-version Structured or D-version
an X-structured

function definition
+

a top expression with an
X-structured path

a comparable D-structured
function definition

+
a top expression with a similar

D-structured path

Table 9.10 The X-version and D-version of scripts

The two paths in the two versions are similar: the X-structured path is a per-
mutation of the D-structured path. The length of the path (cf. section 9.3) is for
Small scripts equal to 6; for Medium scripts: 9; and for Large scripts: 12.

For each size, an X-version of a script is set up and a comparable D-version of
this script. Two sets of comparable scripts are set up: e.g., script 101 is compa-
rable to script 102, and so on (see Table 9.11).

Size Small Medium Large
Set 1 X-version 101 105 109
 D-version 102 106 110
Set 2 X-version 104 108 112
 D-version 103 107 111

Table 9.11 Two sets of scripts

Structured versus Nonstructured Function Defintions 153

Two sets are used in order to reduce practice effects (cf. Scanlan, 1989). A sub-
ject tested on an X-version out of the first set will be tested on the D-version
out of the second set, and vice versa (see Table 9.12).

 Small Medium Large
group 1 101 X 103 D 105 X 107 D 109 X 111 D
group 2 102 D 104 X 106 D 108 X 110 D 112 X

Table 9.12 Scripts (X- and D-versions) for two groups of subjects

An example of an X-version and a comparable D-version of small scripts
(scripts 101 and 103) is given in Table 9.4. Two types of questions about these
scripts can be distinguished: forward questions (for a given input to derive the
possible outputs) and backward questions (for a given output to derive the con-
ditions on the input) (cf. Green, 1980). For each version an example question
with the answer is given in Table 9.13.

question script 101: X-version script 103: D-version

forward

the given input: [1,2,3]
the conditions are:
(x:y:z:zs) ∧ ¬ (x>2) ∧ (x:xs)
the resulting output is: 2

the given input: [3,4]
the conditions are:
(x:y:z:zs) ∧ (x:xs) ∧ (x>2)
the resulting output is: 2

backward

the given output: 2
the conditions on the input are:
((x:y:z:zs) ∧ (x:xs) ∧ (x>2)) ∨
(¬(x:y:z:zs) ∧ (x:xs))

the given output: 2
the conditions on the input are:
¬(x:y:z:zs) ∧ (x:xs) ∧ (x>2)

Table 9.13 Examples of forward questions and backward questions

In the X-structured version (script 101) in Figure 9.3 there are two paths to
expression 2; in D-structured function definitions there is only one path to
each expression. As can be seen in this example with forward questions, the
sequence of conditions in the X-version is a permutation of the conditions in
the D-version.

In this study, forward questions with simple numeric output expressions were
applied to avoid problems with the skill of subjects to draw up the conditions
on the input. In the experiment, the question for each script is:

 Give the value of top (1 or 2 or ... or 99 if top yields a program error).
The actual test objects for each subject in the experiment are six Miranda
scripts each with the question about the value of top.

154 Chapter 9

9.7 Procedure

The following procedure in the experiment has been established (after a pilot
study with 8 expert programmers) (cf. Scanlan, 1989):
• the subjects did the experiment in groups of about 20, each subject at his

own PC (UNIX on PC’s connected to SUN-workstations)
• the subjects answered the questions as an assignment in a regular labora-

tory session in the computer room
• the subjects have been assigned randomly to one of the groups of scripts (see

Table 9.12)
• the instruction was given on screen: there is no influence of the variability

of a human instructor
• four example scripts, with the question about the value of top, were offered

in fixed order to each subject; the feedback on the answers is just 'correct' or
'not correct'

• after the instruction and the example questions, the six treatment scripts
with questions were offered to the subjects

• for each subject, a random permutation was used of these six scripts: this is
done to balance out practice and fatigue effects; no feedback is given on the
answers to these questions

• all subjects serve in all treatments (D- & X-structured for small, medium
and large scripts) resulting in a repeated measures design

• the collection of the data on time and correctness of the answer has been
automated (resulting in a log-file for each subject and a file with data of all
subjects)

9.8 Results

In this section, the results of the experiment will be given: the outliers in sec-
tion 9.8.1, the analysis of variance for Time in section 9.8.3, and for Correct-
ness in section 9.8.4. The experiment has been carried out with 103 subjects.
The average time they spent on the whole experiment (instruction, example
scripts, treatment scripts) was 10.5 minutes (standard deviation 2.5 minutes).

9.8.1 Outliers

For each subject there are 6 measurements on the dependent variable Time,
i.e. for each of the treatments. For 103 subjects there are 618 time measure-
ments. Outliers on the measurement of Time have been detected on the basis

Structured versus Nonstructured Function Defintions 155

of the externally studentized residual35 (Myers & Well, 1991). If for a subject
the absolute value of the residual exceeds the value 3.0 then all measurements
for this subject are disregarded. There appear to be 9 outliers36 with the resid-
ual value ≥ 3.0 for 9 different subjects. It had been noticed that some subjects
were distracted by external events during the experiment in the computer
room: this could be a reason for the extreme outliers. The data of these sub-
jects is disregarded, so of the remaining 94 subjects 564 time measurements
are used in the testing of the hypothesis, together with the related measure-
ment of the correctness.

9.8.2 Analysis of variance

The effects of the factors Size and Structure on the dependent variables Time
and Correctness have been established. The strategy for this analysis is given
by (Neter et al., 1990: Ch 19) using the variance of the data. A template of an
ANOVA table is given in Table 9.14 (cf. Neter et al., 1990), with a = the num-
ber of levels of factor A (Size: a = 3); b = the number of levels of factor B (Struc-
ture: b = 2); n = the sample size (the number of subjects for each treatment: n =
94). The sums of squares for each of the dependent variables have been calcu-
lated from the data37.

Source of
Variation

Sum of Squares
SS

degrees of freedom
df

Mean Squares
MS = SS / df

Subjects SSS n-1 MSS =
SSS / (n-1)

Factor A SSA a-1 MSA =
SSA / (a-1)

Factor B SSB b-1 MSB =
SSB / (b-1)

AB
Interactions

SSAB (a-1)(b-1) MSAB =
SSAB / ((a-1)(b-1))

Error SSE (n-1)(ab-1) MSE =
SSE /((n-1)(ab-1))

Total SSTO abn-1

Table 9.14 Template ANOVA table for Two-Factor Repeated Measures Design
with Repeated Measures on Both Factors

35 In SPSS called the studentized deleted residual
36 Number of outliers on Time per treatment: SX 1; SD 2; MX 1; MD 3; LX 0; LD 2.
37 with SPSS for Windows

156 Chapter 9

In the subsequent sections, the influence of the factors Size and Structure will
be analysed for each of the dependent variables Time and Correctness:
1. A summary statistic will be given with treatment means and factor level

means variable (with sample standard deviations) according to Table 9.7.
2. The treatment means for structured and nonstructured function definitions

will be displayed as function of the Size.
3. An analysis of variance will be presented according to Table 9.14.
4. The hypotheses on the interaction effects and the factor effects will be

tested.

9.8.3 Time

For each treatment, the sample mean Time in seconds (and the standard de-
viation) is given in Table 9.15, together with the factor level means. The sam-
ple treatment mean mjk = Σi yijk / n, where yijk is the observed value on the de-
pendent variable Yijk.

Factor Size
 Levels Small Medium Large Level Mean

Structure

Nonstructured
X

37.40
(18.81)

50.89
(24.95)

74.96
(35.97)

54.42

 Structured
D

31.46
(16.97)

45.80
(18.94)

64.49
(24.89)

47.25

 Level Mean 34.43 48.35 69.73 50.83

Table 9.15 The sample mean Time (seconds) and standard deviation (n=94)

In Figure 9.4 the sample treatment means of the variable Time for structured
(D) and nonstructured (X) function definitions are displayed as function of the
Size.

In case of this continuous dependent variable, we can use the F*-statistic
with has the F-distribution under the null hypothesis. The decision rules are
as follows:
• Interaction effect AB (Size × Structure) with F* = MSAB / MSE.
 If F* ≤ F[1-α; (a-1)(b-1), (n-1)(ab-1)] we fail to reject the null hypothesis H01;

otherwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha1.

• Main effect factor A (Size) with F* = MSA / MSE.
 If F* ≤ F[1-α; (a-1), (n-1)(ab-1)] we fail to reject the null hypothesis H02; oth-

erwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha2.

Structured versus Nonstructured Function Defintions 157

• Main effect factor B (Structure) with F* = MSB / MSE.
If F* ≤ F[1-α; (b-1), (n-1)(ab-1)] we fail to reject the null hypothesis H03; oth-
erwise the null hypothesis is rejected and we accept the alternative hy-
pothesis Ha3.

Time

Size

0
10
20
30
40
50
60
70
80

Small Medium Large

X

D

Figure 9.4 The means of Time (seconds) measured for X- and D-structured
scripts as function of the Size

The ANOVA table for the dependent variable Time is given in Table 9.16, to-
gether with the calculated F*-value, the F-value at significance level α, and
also the p-value (the probability, when H0 is true, of observing a test result as
deviant or more deviant than the result actually obtained).

Source of Varia-
tion

Sum of
Squares

df Mean
Squares

F* F
α=0.05

p

Subjects 96382 93 1036.37
Factor Size 118828.1 2 59414.05 117.6 3.00 .000
Factor Structure 7249.09 1 7249.09 13.68 3.84 .000
Size × Structure
Interactions

783.78 2 391.89 0.820 3.00 .443

Error 232469.4 465 499.93
Total 455712.3 563

Table 9.16 ANOVA table for the variable Time

From Table 9.16, with a level of significance α = 0.05, it can be concluded that:

158 Chapter 9

• There is no significant interaction effect between Size and Structure on the
variable Time, since F* ≤ F (p = .443) (the curves of the treatment means in
Figure 9.4 for the two levels of Structure are nearly parallel): i.e., we fail to
reject the null hypothesis H01.

• There is a significant main effect of Size on the variable Time, since F* > F
(p = .000). This means that the null hypothesis H02 can be rejected.

• There is a significant main effect of Structure on the variable Time, since F*
> F (p = .000). This means that the null hypothesis H03 can be rejected.

The hypotheses H04,..,H012, involving the treatment means, can be tested as
well. The family level of significance is chosen to be α = 0.10. There are 9 pair-
wise comparisons of treatment means, each of them can be analysed with a
single degree of freedom test (Neter et al., 1990) with α’ = 0.10/9 = 0.011. The
t* test statistic has been used, with t* = (mjk-mj'k') / √(2 × MSE / n), and degrees
of freedom = (n-1)(ab-1). Under the null hypothesis, the statistic t* follows the
t distribution. Here, t[0.011;465] = 2.33 .

Null Hypothesis Estimated t* t* ≥ t p
H0

4 : µSX - µSD = 0 mSX - mSD = 5.94 1.82 False .036

H0
5 : µMX - µMD = 0 mMX - mMD = 5.09 1.56 False .070

H0
6 : µLX - µLD = 0 mLX - mLD = 10.47 3.21 True .001

H0
7 : µMX - µSX = 0 mMX - mSX = 13.49 4.14 True .000

H0
8 : µLX - µMX = 0 mLX - mMX = 24.07 7.38 True .000

H0
9 : µLX - µSX = 0 mLX - mSX = 37.56 11.52 True .000

H0
10: µMD - µSD = 0 mMD - mSD = 14.34 4.40 True .000

H0
11: µLD - µMD = 0 mLD - mMD = 18.69 5.73 True .000

H0
12: µLD - µSD = 0 mLD - mSD = 33.03 10.13 True .000

Table 9.17 Single degree of freedom tests for hypotheses on the variable Time

From Table 9.17, it can be concluded that in tests 4 and 5 the null hypothesis
cannot be rejected; in the other tests (6..12) the null hypothesis can be rejected
and the corresponding alternative hypothesis will be accepted. In other words,
in these cases there is a significant influence (with a family level of signifi-
cance α = 0.10) on the dependent variable Time.

If there had been an interaction effect, the effect of Size on the Structure-
effect could have been tested with the following hypotheses:
 H013: (µSX - µSD) - (µMX - µMD) = 0

Structured versus Nonstructured Function Defintions 159

 H014: (µMX - µMD) - (µLX - µLD) = 0
 H015: (µSX - µSD) - (µLX - µLD) = 0
These tests could replace the ratio-measure as defined by Scanlan (1989), as
will be discussed in section 9.9.

9.8.4 Correctness

For each treatment, the sample mean of the variable Correctness (and the
standard deviation) is given in Table 9.18, together with the factor level
means. The sample mean gives the proportion correct answers; this can also be
seen as the probability of a correct answer.

Factor Size
 Levels Small Medium Large Level Mean

Structure

Nonstructured
X

0.660
(0.48)

0.600
(0.49)

0.670
(0.47)

0.643

 Structured
D

0.710
(0.45)

0.860
(0.35)

0.940
(0.25)

0.836

 Level Mean 0.685 0.730 0.805 0.740

Table 9.18 Proportion correct answers and sample standard deviation (n=94)

In Figure 9.5 the proportion correct answers for structured (D) and non-
structured (X) function definitions are displayed as function of the Size.

Correctness

Size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Small Medium Large

X

D

Figure 9.5 The proportion Correct answers for X- and D-structured scripts as
function of the Size

160 Chapter 9

In case of this binary dependent variable, we will use the Q-statistic, defined
by Cochran (Myers et al., 1991), with a χ2-distribution under the null hypothe-
sis; χ2[1-α, df] denotes the χ2-value at significance level α and df is the degrees
of freedom. The decision rules are as follows:
• Interaction effect AB (Size × Structure) with Q = SSAB / MSE.
 If Q ≤ χ2[1-α; (a-1)(b-1)] we fail to reject the null hypothesis H01; otherwise

the null hypothesis is rejected and we accept the alternative hypothesis Ha1.
• Main effect factor A (Size) with Q = SSA / MSE.
 If Q ≤ χ2[1-α; (a-1)] we fail to reject the null hypothesis H02; otherwise the

null hypothesis is rejected and we accept the alternative hypotheses Ha2.
• Main effect factor B (Structure) with Q = SSB / MSE.

If Q ≤ χ2[1-α; (b-1)] we fail to reject the null hypothesis H03; otherwise the
null hypothesis is rejected and we accept the alternative hypothesis Ha3.

The ANOVA table for the dependent variable Correctness is given in Table
9.19, together with the calculated value for the Q-statistic, the χ2-value at sig-
nificance level α, and the p-value.

Source of Varia-
tion

Sum of
Squares

df Mean
Squares

Q χ2

α=0.05
p

Subjects 30.19 93 0.32
Factor Size 1.32 2 0.66 7.90 5.99 .021
Factor Structure 5.36 1 5.36 32.09 3.84 .000
Size × Structure
Interactions

1.42 2 0.71 8.50 5.99 .016

Error 70.39 465 0.15
Total 108.68 563

Table 9.19 ANOVA table for the variable Correctness

From Table 9.19, with a level of significance α = 0.05, it can be concluded that:
• There is a significant interaction effect between Size and Structure on the

variable Correctness, since Q > χ2 (p =.021). This means that the null hy-
pothesis H01 can be rejected.

• There is a significant main effect of Size on the variable Correctness, since Q
> χ2 (p =.000). This means that the null hypothesis H02 can be rejected.

• There is a significant main effect of Structure on the variable Correctness,
since Q > χ2 (p =.016). This means that the null hypothesis H03 can be re-
jected.

Structured versus Nonstructured Function Defintions 161

Again, we will consider the hypotheses on the treatment means. The family
level of significance is chosen to be α = 0.10. There are 9 pairwise comparisons
of treatment means, each of them can be analysed with a single degree of free-
dom test with α’ = 0.011. For each comparison, we can use the McNemar-
statistic M with a χ2-distribution under the null hypothesis. M is estimated as
follows (Kotz et al., 1989): M = (n01-n10)2/(n01+n10), where nxy is the number of
observations having response x on the first treatment in the comparison, and
response y on the second treatment (response 0 = incorrect; response 1 = cor-
rect). Furthermore, χ2[1-α; df] = χ2[0.989; 1] = 6.63.

Null Hypothesis Estimated M M ≥ χ2 p
H0

4 : µSX - µSD = 0 mSX - mSD = - 0.05 0.86 False .353

H0
5 : µMX - µMD = 0 mMX - mMD = - 0.26 16.89 True .000

H0
6 : µLX - µLD = 0 mLX - mLD = - 0.27 17.86 True .000

H0
7 : µMX - µSX = 0 mMX - mSX = - 0.06 1.06 False .304

H0
8 : µLX - µMX = 0 mLX - mMX = 0.07 1.32 False .250

H0
9 : µLX - µSX = 0 mLX - mSX = 0.01 0.03 False .853

H0
10: µMD - µSD = 0 mMD - mSD = 0.15 8.17 True .004

H0
11: µLD - µMD = 0 mLD - mMD = 0.08 3.27 False .071

H0
12: µLD - µSD = 0 mLD - mSD = 0.23 16.33 True .000

Table 9.20 Single degree of freedom tests for hypotheses on the variable Cor-
rectness

From Table 9.20, it can be concluded that in tests 4, 7, 8, 9 and 11 the null hy-
pothesis cannot be rejected. In the other tests 5, 6, 10 and 12 the null hypothe-
sis can be rejected: there is a significant influence (with a family level of sig-
nificance α = 0.10) on the dependent variable Correctness.

9.9 Discussion

In the following tables, the results from the previous sections have been sum-
marised. The existence of significant main effects and interaction effects,
based on the overall analysis of variance (α = 0.05), are given in Table 9.21.

For each of the dependent variables Time and Correctness, there is an over-
all significant influence of the factor Structure and Size. For the variable Time,
no significant interaction effect has been found; for Correctness, a significant
interaction effect has been shown.

162 Chapter 9

Factor

Variable
Structure Size Structure × Size

Time Yes Yes No
Correctness Yes Yes Yes

Table 9.21 Existence of significant factor effects and interaction effects

The results of testing the hypotheses involving treatment means are given in
Table 9.22: whether or not the null hypothesis has been rejected (family level
of significance α = 0.10).

H0 H04 H05 H06 H07 H08 H09 H010 H011 H012

 µSX-

µSD

µMX-

µMD

µLX-

µLD

µMX-

µSX
µLX-

µMX
µLX-

µSX
µMD-

µSD
µLD-

µMD
µLD-

µSD
Time No No Yes Yes Yes Yes Yes Yes Yes
Correct No Yes Yes No No No Yes No Yes

Table 9.22 Rejection of null hypotheses 4..12 on treatment means

With these results, it can be seen that:
• The overall significant effect of Structure on the variable Time appears to be

mainly due to the effect of the scripts of size Large.
• The overall significant effect of Structure on Correctness appears to be

mainly due to the effect of the Medium and Large scripts.
• The overall significant effect of Size on X-structured and D-structured

scripts on the variable Time is confirmed on each comparison.
• The overall significant effect of Size on the variable Correctness is mainly

due to the effect of Size on D-structured scripts. For none of the comparisons
on X-structured scripts, a significant influence of the factor Size has be
shown. This also shows the interaction between the factors Size and Struc-
ture on the variable Correctness.

The two dependent variables - Time and Correctness - have been taken as cri-
teria for the performance of programmers. We assumed that the performance
on structured function definitions versus comparable nonstructured function
definitions corresponds to the performance on D-structured paths versus the
similar X-structured paths as tested in the hypotheses. Then, in summary, we
conclude that, with respect to the structure and size of function definitions:
1. subjects need significant less time to obtain an answer to structured func-

tion definitions than to nonstructured function definitions

Structured versus Nonstructured Function Defintions 163

2. subjects give significant more often correct answers to somewhat larger
structured function definitions than to nonstructured function definitions of
comparable size

3. subjects need significant more time to obtain an answer to larger function
definitions than to smaller ones

4. subjects give significant more often correct answers for larger structured
function definitions than for smaller ones

Conclusions 1 and 2 give empirical evidence to support the general conclusion
that programmers perform better on structured Miranda function definitions
than on nonstructured definitions.

Conclusion 3 seems to be quit obvious, but conclusion 4 came up as rather a
surprise and seems to be counter-intuitive: an increase in the proportion cor-
rect answer for larger function definitions. However, a similar ‘unexpected’
trend has been observed in other studies: Basili & Perricone (1984) found that
there is a higher error rate in smaller sized modules than in larger modules.
One of the tentative explanations they offer is that larger modules are coded
with more care than smaller modules because of their size. Also Möller &
Paulish (1993) found significantly higher fault rates in small modules as com-
pared to larger ones.

The experiment used in this study is similar to the one used by Scanlan (1989)
in the comparison of flowcharts and pseudocode. However, the design and sta-
tistical analysis used in this study differ on some important aspects.
• Scanlan used a single factor repeated measures design, as opposed to a two-

factor repeated measures design used here. In our study, the main effects
and interaction effect have been established on basis of analysis the vari-
ance; the dependency of hypotheses on the treatment means has been ac-
counted for explicitly.

• A ratio-measure is used by Scanlan in order to assess the interaction effect.
In terms of the present study, the ratio is calculated by dividing the larger
time (of the structured or nonstructured definition) by the smaller time (of
the structured or nonstructured definition) for each subject at each size
level; those ratios in favour of structured definitions receive a positive sign;
those ratios in favour of nonstructured definitions receive a negative sign. In
our experiment, the ratio-measure resulted in a highly non-normal distribu-
tion, because of the discontinuity of the measure between -1 and +1. Fur-
thermore, in case of equal times, there is no appropriate decision rule to as-
sign the value -1 or +1. In this chapter, an alternative is proposed for the ra-
tio-measure (see section 9.8.3).

164 Chapter 9

• The confidence measure used by Scanlan is on an ordinal scale: four levels
from 1 to 4. The mean confidence level of such an ordinal measure, as used
by Scanlan, is questionable. Moreover, it is not obvious that the subjects are
reliable in the self-assessment of the correctness of their solution, in other
words whether the confidence level depends on the correctness of their an-
swer. In some other studies it has been shown that this is not always the
case. Gibson & Senn (1989) found a notable discrepancy between correct-
ness and confidence. Gathy and Denef (1993) found a strong correlation be-
tween the self-confidence assessment scores and the final examinations for
good students, whereas a negative but loose correlation was observed for
weak students. Leclercq (1993) analysed factors that affect the confidence
estimation and the confidence expression.

With respect to these points, Scanlan’s study should be reconsidered.

9.10 Conclusion

The aim of this study has been to investigate programmers' performance on
structured versus nonstructured function definitions. In the experiment, based
on a two-factor repeated measures design, the control-flow model of Miranda
function definitions and related metrics proved to be useful in the definition
the factors and factor levels of Structure and Size.

The experimental findings support the main hypothesis that programmers
perform better on structured Miranda function definitions than on non-
structured definitions. Some counter-intuitive findings, reported in the litera-
ture before, came up in the present study as well: programmers make fewer
errors in larger function definitions than in smaller ones.

Based on these experimental findings, the programming style rule can be
put forward to use structured function definitions instead of nonstructured
ones. This would mean that a programming style is adopted to write guards
that always are concluded with an ‘otherwise’-case.

 f (x:xs) = 1, if x > 2
 = 2, otherwise
 f [x] = 3

 g (x:xs) = 1, if x > 2
 = 2, if x ≤ 2
 g [x] = 3

Table 9.23 Example of a structured function definition f and a semantically
equivalent nonstructured definition g

The rule could be relaxed by demanding total guards, such that always, once a
pattern succeeds, one of the guards in the clause will succeed. In that situa-

Structured versus Nonstructured Function Defintions 165

tion, if no ‘otherwise’-case is used to obtain total guards, a nonstructured func-
tion definition would be obtained in the control-flow model, because in the
model is abstracted from the actual content of the guards. An example is given
in Table 9.23. Both definitions have total guards. In the control-flow model, the
function definition of f is structured, whereas the semantically equivalent
definition of g is nonstructured.

To check the application of this programming rule, a Miranda static ana-
lyser (van den Berg & van den Broek, 1995a) based on the control-flow model
of function definitions can be used. With this analyser, X-structured function
definitions in scripts can be spotted easily, also in scripts with many defini-
tions. After this anomaly checking, these definitions can be inspected on errors
and/or be rewritten to a structured version.

In a survey of scripts written by experts, hardly any nonstructured function
definition has been found. Apparently, experts already do not use this kind of
function definitions. For some programmers with a few years of functional
programming experience, nonstructured function definitions have been de-
tected in their scripts. Programming style rules, as proposed above, could
make programmers aware of the operational semantics of function definitions.

Acknowledgement

The authors would like to thank N. Fenton for his comments on an earlier ver-
sion of this chapter; R. Houterman and S. Oosterloo for their advise on the sta-
tistics used in this chapter; E. Prangsma and M. Harssema for the assistance
in the experiment; and last but not least, the students for their participation in
the experiment.

166 Chapter 9

Chapter 10 167

Conclusion

In the general introduction of the thesis, the following problems have been put
forward:
• How can aspects of software quality in different programming paradigms

be assessed using software metrics.
• How can software in a functional programming language be modelled to

capture structural properties of this software.
• How can software models and metrics be validated in experiments based on

measurement theory.
As the end result of the thesis, one would expect a conclusion such as:

The results of the experiments show that the programs in a functional lan-
guage took significantly less time to develop and were considerably more con-
cise and easier to understand than the corresponding programs written in an
imperative language.

However, it is hard to reach such a general conclusion on objective grounds. In
this thesis, based on the experiment described in Chapter 2, a tentative con-
clusion is put forward, that students in the experimental group who learned
functional programming (FP) made ‘better’ programs than students in the con-
trol group who learned imperative programming (IP). This type of conclusion
raised the question of its validity (as discussed in part C of this thesis).

The conclusion in Chapter 2 has been based on one particular type of as-
signments: the design and implementation of a program. An important crite-
rion used in the experiment is the coverage of the design by its implementa-
tion. It appeared that students in the FP-group showed a higher coverage than
students in the IP-group. This could be rephrased as follows: FP-students used
more abstractions in their programs than IP-students. The type of abstractions
are functional (or procedural) abstractions. Hence, the conclusion is as follows:
FP-students used more functions in their programs than IP-students. How-
ever, this is hardly surprising, since the FP-students used a functional pro-
gramming language in which functions are more prominent than in imperative

168 Chapter 10

languages. This confounding effect may obscure the actual differences between
the two programming groups.

In Chapter 3, another problem arose: experts were requested to rank stu-
dents programs on some given criteria. Apparently, for functional programs
there was less consensus than for imperative programs, because of the novelty
of the functional programming style in teaching. This points to another major
problem in this type of research: the importance of differences between pro-
grammers:

The variability due to subject differences often outweighs variability due to
independent variables. (Moher & Schneider, 1982)

This problem can be tackled only by careful experimentation. This thesis has
been aimed specifically at the issue of experimentation: in the second part, the
modelling of software for structure metrics has been described; and in part C,
the validation of these metrics has been investigated in some experiments.

One important lesson learned in the previous years in software measurement
is that ‘no single technology or method can be expected to work well in all con-
texts, and observing software phenomena out of context seems to be doomed to
fail.’ (Basili et al., 1993).

Therefore, there will no general answer to the question in Chapter 1: ‘is
functional programming the best initial programming language’, but the ques-
tion should be: ‘is functional programming the best initial programming lan-
guage, for a given group of students, with a certain educational background,
with a certain motivation, within a certain curriculum, and so on.’ This situa-
tion can be made more concrete: the population of first-year students in the
department has changed over the last few years: now, not only the ‘pure’ Com-
puter Science students take the functional programming course, but also stu-
dents in Business Information Technology. These students differ in several as-
pects from the original group. Moreover, in several courses in the curriculum,
there is a tendency to emphasise an object orientation to programming and de-
sign. Again, this may have an impact on the answer to the question regarding
the best initial programming language.

This leads to another conclusion: ‘We need to characterise and understand
the project context and understand the various phenomena relative to that
context We need to replicate experiments in different contexts to fully un-
derstand the nature of the various phenomena ‘ (Basili et al., 1993).

The context for the research in this thesis can be characterised by pro-
gramming-in-the-small, which has been investigated in controlled experiments
with novice programmers.

Conclusion 169

Although there are no general conclusions such as stated in the previous sec-
tion, there are other achievements of the research presented in this thesis.

It has been shown (Chapters 4 and 5) that some models, e.g. flowgraphs and
callgraphs, can be used to model software in different programming para-
digms. These models, which are mainly used for imperative programming,
have been adapted for programs in the functional programming language Mi-
randa. The proposed control-flow model captures the operational semantics of
function definitions. The callgraph model has been adapted to specific proper-
ties of functional programs. The models used for both programming paradigms
allow comparison of software in different languages based on these abstrac-
tions and related metrics. However, the validation of these comparisons is a
major problem to be solved, as has been shown for the McCabe and Halstead
metrics in some exploratory experiments with respect to the comprehensibility
(Chapters 3 and 2).

The objectivity of the assessment of software attributes has been enhanced
by the use of static analysis tools, by which the measurement is automated.
For this purpose, the metrics based on these models have been formalised in
this research by means of attributed grammars (Chapters 3 and 5). Somewhat
larger software has also been analysed with the metrics tools. These analysers
are a helpful supplement to other approaches of static analysis.

The validation of structure metrics has been addressed in a study of Miranda
type expressions (Chapter 6). Structure metrics have been defined on the base
of parse trees of type expressions. A framework for validation emerged in this
case study. In order to substantiate the validation of software metrics, the role
of measurement theory has been investigated (Chapter 7). Representation axi-
oms have been used in establishing the empirical and theoretical order of type
expressions. For some subsets of type expressions in the experiment, there is a
good correspondence between the empirical order and the hypothesised theo-
retical order. Different types of validities in the software metric development
process have been clarified by combining a validation network scheme and the
representational measurement theory (Chapter 8).

In an extended experiment, the control-flow model for Miranda function
definitions has been utilised to establish the influence of the structure of defi-
nitions on their comprehensibility (Chapter 9). The experimental design and
the statistical analysis have been described in detail. Structured function defi-
nitions appear to be easier to understand by novice programmers than non-
structured ones. A programming style rule on the use of guards in Miranda
function definitions has been validated by these findings.

170 Chapter 10

Further research

The research presented in this thesis could be extended in many directions.
Few of them will be brought to the fore: firstly, in the field of experimental
software engineering, and secondly, those with some implications for the com-
puter science curriculum.

There is a need for metrics of products in the early phases of software devel-
opment, e.g. specification and design, and for a relation between these metrics
and the characteristics of the final software products. Functional programs are
being used as executable specifications. The models and tools described in this
thesis could be investigated in this context.

A database ought to be set up of metrics of functional programs, with data
on development effort, error rates, and such-like, to highlight characteristics of
functional programs in different development environments.

The actual application of metric tools in software development using func-
tional programming, particularly with respect to testing and maintenance,
should be investigated in order to tailor the metrics and the tools to an optimal
use in specific environments.

Controlled experiments, as described in this thesis, should be extended to
validate other rules in functional programming, and the role of measurement
theory in these experiments should be strengthened.

In computer science education, the use of software metrics for the objective as-
sessment of programming assignments could be pursued (cf. Ceilidh: Benford
et al., 1994). Probably as important is that students in computer science get
acquainted with software measurement to support the development and man-
agement of software. This could be achieved by the use of metric tools in pro-
gramming courses and programming projects. Furthermore, the curriculum
could be extended with courses specifically directed to software measurement
and experimentation:

Measurement and experimentation are standard ingredients in traditional
science and engineering curricula. ... Recurring use of this paradigm within
the [computer science] curriculum is important to facilitate its being learned
properly. (Zweben, 1993)

Some extended packages for software measurement education have been de-
veloped (e.g. Metkit: Ashley, 1994).

Conclusion 171

The thesis will be concluded with a quotation of Rombach, stated in the pre-
face to a Workshop on Experimental Software Engineering:

We have only begun to understand the experimental nature of software engi-
neering, the role of empirical studies and measurement within software en-
gineering, and the mechanisms needed to apply them successfully. (Rombach
et al., 1993)

The research in this thesis will have achieved its goal when it has made a con-
tribution to this understanding.

172 Chapter 10

 173

Summary

In general, a producer is interested in the quality of his product, whether it is
a software package or, for example, a car. There are quality aspects which are
important to the user of the product, such as for a car the fuel consumption
rate. Other quality aspects are relevant to the technicians who have to build
the product or to maintain it: e.g. the ease of assembling certain parts. Fur-
thermore, the producer will be interested in the cost and duration of the pro-
duction, and the resources needed. Such quality aspects have to be measured
to allow a comparison with other products and production processes: a particu-
lar fuel consumption rate will be acceptable in certain circumstances.

A similar situation is encountered in the case of software. There are user
aspects of quality, for example with respect to the interface and performance,
and other aspects related to the programmers who have to design and imple-
ment the computer programs. The discipline of software engineering offers
methods for the design and production of software. The field of software meas-
urement provides approaches to the quantification of quality aspects of soft-
ware, related to the product, the process and the resources. An obvious soft-
ware metric is the size of the program, usually expressed in the number of
lines of executable code. But there are many other software metrics, and it is
necessary to be able to decide when to use which metric and how. With these
metrics, one would like to be able to make an objective assessment of the rela-
tive merits of software products and software development methods.

This thesis addresses some issues on the quality of software with respect to
the programmers: the comprehensibility of the program code. A lot of time is
spent reading and understanding programs in order to remove faults or to
adapt the program to changed requirements. Many factors in the program code
affect the comprehensibility of the program, such as the language used, the
naming of variables, the structure, the indentation, explanatory documenta-
tion, the experience of the programmer, and so on.

In order to capture a particular quality aspect of programs, usually a model
is built. In such models, certain details in the program are abstracted. The

174

models are used in the definition of software metrics. The models and metrics
have to be validated, for example their consistency has to be established. Fur-
thermore, the metric values can be obtained with the use of tools: i.e. another
computer program is used to analyse the original programs. The tools assure a
fixed procedure and thus an objective assessment of the quality aspects.

This thesis focuses on the structure of the code, how it is divided into parts
- usually called modules - and how the modules are related to each other. This
aspect of structure is modelled in a callgraph of the program. Another aspect
studied in this thesis is the control structure: the order in which parts of the
program will be executed, as prescribed by special language constructs. For
this aspect, a control-flow graph of the program is used. The metrics are indi-
cators of the complexity of the structure. These models and metrics are de-
scribed in Chapters 4 and 5. A tool for the automated measurement of metrics
based on these models is described in Chapter 5.

Two classes of programming languages are considered: the ‘classical’ im-
perative ones, with languages such as Pascal and Modula-2, and the less com-
mon class of functional languages, where Miranda is used as the example. The
latter is a very powerful mathematics-like language. These languages are used
in the initial programming courses in Computer Science at the University of
Twente as described in Chapter 2. One would like to know whether students
who learn to program in Miranda write better programs than the students who
learn for example Modula-2; and also: are these Miranda programs easier to
comprehend than Modula programs? For this comparison, some experiments
with certain well-known software metrics are described in Chapters 2 and 3.
Some models, the callgraph and the control-flow graph, that are used for im-
perative languages, are modified for the functional language Miranda as de-
scribed in Chapter 5.

Once one has obtained metric values, it has to established how they can be
used. Do they yield the expected ordering of programs, e.g. with respect to
their comprehensibility? Are there threshold values beyond which the pro-
grams are difficult to understand, or are very error prone? These questions are
part of the external validation. The validation has been carried out in some
formal experiments using small programs with first-year students, thus novice
programmers. They are described in Chapters 6 and 9. The use of measure-
ment theory in the validation is explored in Chapter 7. It is an open question
whether the results of experiments involving novice programmers and small
programs can be generalised to expert programmers in the industry working
on large programs in teams. Several of these validation issues are raised in
Chapter 8 of this thesis.

 175

References

Akker, R. op den (Ed.), Hoeven, G. van der, Joosten, S. & Seters, H. van (1992). Func-

tioneel Programmeren, studentenhandleiding [Functional Programming, student's
manual]. Enschede: University of Twente.

Akker, R. op den (Ed.), Hoeven, G. van der, Joosten, S. & Seters, H. van (1992b).
Functioneel Programmeren, docentenmateriaal [Functional Programming,
teacher's manual]. Enschede: University of Twente.

American Psychological Association (1954). Technical Recommendations for Psycho-
logical Tests and Diagnostic Techniques. Washington: American Psychological As-
sociation.

Ashley, N. (1994). METKIT: Training in How to Use Measurement as a Software
Management Tool. Software Quality Journal, 3, 129-136.

Bache, R. & Bazzana, G. (1994). Software Metrics for Product Assessment. London:
McGraw-Hill.

Bache, R. & Leelasena, L. (1990). Qualms, A Tool for Control Flow Analysis and
Measurement. CSSE, London: South Bank Polytechnic.

Bache, R. & Wilson, L. (1988). Details of the Implementation of the Decomposition
Algorithm. In: J.J. Elliott, N.E. Fenton, S. Linkman, G. Markman, & R. Whitty
(Eds): Structure-based Software Measurement. London: CSSE, South Bank Poly-
technic, 270-284.

Bache, R.M. (1990). Graph Models of Software. PhD Dissertation, London: Southbank
Polytechnic.

Backus, J. (1978). Can Programming be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs. Communications ACM 21(8), 613-
641.

Bailes, P.A. & Salzman, E.J. (1989). A Proposal for a Bachelors Degree Program in
Software Engineering. Software Engineering Education. Lecture Notes in Com-
puter Science 376, 90-108. Berlin: Springer.

176

Bailey, R. (1990). Functional Programming with HOPE. Chichester: Ellis Horwood.

Baker, A.L., Bieman, J.M., Fenton, N., Gustafson, D.A., Melton, A. & Whitty, R.
(1990). A Philosophy for Software Measurement. J. Systems Software, 12, 277-281.

Baker, E. L., Atwood, N. K. & Duffy, T. M. (1988). Cognitive Approaches to Assessing
Readability of Text. In: A. Davison & G.M. Green (Eds): Linguistic Complexity and
Text Comprehension: Readability Issues Reconsidered, 55-84. Hillsdale, NJ: Law-
rence Erlbaum Associates.

Basili, V.R. & Perricone, B.T. (1984). Software Errors and Complexity: an Empirical
Investigation. Communications ACM, 27(1), 42-52.

Basili, V.R., & Rombach, H.D. (1988). The TAME Project: Towards Improvement-
Oriented Software Environments. IEEE Trans. Softw. Eng., SE 14, 758-773.

Basili, V.R., Selby, R.W. & Hutchens, D.H. (1986). Experimentation in Software Engi-
neering. IEEE Trans. Softw. Eng., SE 12 (7), 733-743.

Benford, S., Burke, E. & Foxley, E. (1994). Courseware to Support the Teaching of
Programming. Report Dept. Computer Science, University of Nottingham.

Berg, K.G. van den & Broek, P.M. van den (1994). Axiomatic Testing of Structure
Metrics. Proceedings of the Second International Software Metrics Symposium.
London: IEEE Computer Society Press, 45-53. (This thesis Chapter 7).

Berg, K.G. van den & Broek, P.M. van den (1995a). Static Analysis of Functional Pro-
grams. Information and Software Technology, 37(4), 213-224. (This thesis Chapter
5).

Berg, K.G. van den & Broek, P.M. van den (1995b). Programmers' Performance on
Structured versus Nonstructured Function Definitions. Memoranda Informatica
95-11, Enschede: University of Twente. (This thesis Chapter 9).

Berg, K.G. van den & Broek, P.M. van den (1995c). Axiomatic Validation in the Soft-
ware Metric Development Process. In: A. Melton (Ed.): Software Measurement:
Understanding Software Engineering, London: Thomson. (This thesis Chapter 8).

Berg, K.G. van den & Pilot, A. (1989). Functioneel Programmeren 1987/88. Evaluatie
van een onderwijsexperiment [Functional Programming 1987/88. Evaluation of an
educational experiment], Memoranda Informatica INF-89-6. Enschede: University
of Twente.

Berg, K.G. van den (1992). Syntactic Complexity Metrics and the Readability of Pro-
grams in a Functional Computer Language. In: F.L. Engel, et al. (Eds): Cognitive
Modelling and Interactive Environments in Language Learning, NATO Advanced
Science Institute Series. Berlin: Springer, 199-206. (This thesis Chapter 3).

References 177

Berg, K.G. van den (1992a). Imperatief Programmeren, [Imperative Programming]
Lecture notes. Enschede: University of Twente.

Berg, K.G. van den, Broek, P.M. van den & Petersen, G.M. van (1993). Validation of
Structure Metrics: A Case Study. Proceedings of International Software Metrics
Symposium METRICS 93. Washington: IEEE Computer Society Press, 92-99.
(This thesis Chapter 6).

Berg, K.G. van den, Massink, M. & Pilot, A. (1989). Experimentele Vergelijking van
het Leren Programmeren ondersteund door een Functionele versus een Imperatieve
Programmeertaal. [Experimental comparison of programming education supported
by a functional versus an imperative programming language]. Leiden: Educational
Research Days.

Berka, K. (1983). Measurement: Its Concepts, Theories, and Problems. Dordrecht: Rei-
del.

Berne, H. van, Duijvestijn, A.J.W. & Hoeven, G.F. van der (1985). Functionele Talen
[Functional Languages]. Informatie 27(10), 837-928.

Bieman, J., Fenton, N.E., Gustafson, D., Melton, A. & Whitty, R. (1992). Moving from
Philosophy to Practice in Software Measurement. In: T. Denvir, R. Herman &
R.W. Whitty (Eds): Formal Aspects of Measurement. London: Springer, 38-59.

Bird, R.S. & Wadler, Ph. (1988). Introduction to Functional Programming. New York:
Prentice Hall.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J. & Merritt, M.J.
(1973). Characteristics of Software Quality. Software Series 73-09. Redondo Beach
(TRW). Also published in 1978, Amsterdam: North Holland.

Brinberg, D. & McGrath J.E. (1985). Validity and the Research Process. Newbury
Park: Sage.

Broek, P.M. van den & Berg, K.G. van den (1993). Modelling Software for Structure
Metrics, Memoranda Informatica 93-12. Enschede: University of Twente. (This
thesis Chapter 4).

Broek, P.M. van den & Berg, K.G. van den (1995). Generalised Approach to Structure
Metrics. Software Engineering Journal, 10(2), 61-67.

Bush, M.E. & Fenton, N.E. (1990). Software Measurement: A Conceptual Framework.
J. Systems Software, 12, 223-231.

Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre. Mathema-
tische Annalen, 46, 481-512.

Card, D. N. & Glass, G. L. (1990). Measuring Software Design Quality. Englewood
Cliffs, NJ: Prentice Hall.

178

Cardelli, L. & Wegner, P. (1985). On Understanding Types, Data Abstraction, and
Polymorphism. ACM Computing Surveys, 17 (4), 471-522.

Clack, C., Myers, C., & Poon, E. (1995). Programming with Miranda. New York: Pren-
tice Hall.

Conte, S. D., Dunsmore, H. E. & Shen, V. Y. (1986). Software Engineering Metrics and
Models. Menlo Park, CA: Benjamin/Cummings.

Coulter, N. S. (1983). Software Science and Cognitive Psychology. IEEE Trans. Softw.
Eng., SE 9(2), 166-171.

Curtis, B. (1981). The Measurement of Software Quality and Complexity. In: A. Perlis,
F. Sayward & M. Shaw (Eds): Software Metrics: An Analysis and Evaluation, 203-
223. Cambridge, Mass: MIT Press.

Curtis, B. (1986). Human Factors in Software Development. 2nd ed. Washington:
IEEE Computer Society.

Curtis, B., Sheppard, S. B., Milliman, P., M. A. & Love, T. (1979). Measuring the Psy-
chological Complexity of Software Maintenance Tasks with the Halstead and
McCabe Metrics. IEEE Trans. Softw. Eng., SE 5(2), 96-104.

Davies, S. P. (1989). Skill Levels and Strategic Differences in Plan Comprehension
and Implementation in Programming. In: A. Sutcliffe & L. Macaulay (Eds): Peoples
and Computers V (487-502). Cambridge: Cambridge University Press.

Davies, S.P. (1993). Models and Theories of Programming Strategy. Int. J. Man-
Machine Studies, 39, 237-267.

Fenton, N. E. & Kaposi, A. A. (1989). An Engineering Theory of Structure and Meas-
urement. In: B. A. Kitchenham & B. Littlewood (Eds): Measurement for Software
Control and Assurance. London: Elsevier, 335-384.

Fenton, N.E. & Kaposi, A.A. (1987). Metrics and Software Structure, Information and
Software Technology, 29(6), 301-320.

Fenton, N.E. (1991). Software Metrics: A Rigorous Approach. London: Chapman &
Hall.

Fenton, N.E. (1992). When a Software Measure is not a Measure. Software Engineer-
ing Journal, Sept, 357-362.

Fenton, N.E. (1994). Software Measurement: A Necessary Scientific Basis. IEEE
Trans. Softw. Eng. SE 20 (3), 199-206.

Fenton, N.E., Pfleeger, S.L. & Glass, R.L. (1994). Science and Substance: A Challenge
to Software Engineers. IEEE Software, July, 86-95.

References 179

Finkelstein, L., & Leaning, M.S. (1984). A Review of the Fundamental Concepts of
Measurement. Measurement, 2(1), 25-34.

Fleck, A. C. (1990). A Case Study Comparison of Four Declarative Programming Lan-
guages. Software-Practice and Experience, 20 (1), 49-65.

Fodor, J.A., Bever, T.G., & Garret, M.F. (1974). The Psychology of Language. New
York: McGraw-Hill.

Frazier, L. (1988). The Study of Linguistic Complexity. In: A. Davison & G.M. Green
(Eds): Linguistic Complexity and Text Comprehension: Readability Issues Recon-
sidered, 193-221. Hillsdale, NJ: Lawrence Erlbaum Associates.

Gathy, P. & Denef, J.-F. (1993). Self-Assessment During Computer-Assisted Testing
in Histology. In: D.A. Leclercq & J.E. Bruno (Eds): Item Banking: Interactive Test-
ing and Self-Assessment. Berlin: Springer, 233-241.

Gibson, V.R. & Senn, J.A. (1989). System Structure and Software Maintenance Per-
formance. Communications ACM, 32(3), 347-358.

GrammaTech (1993). The Synthesizer Generator Reference Manual, Release 4.1. New
York: GrammaTech.

Green, T. R. G. & Borning, A. (1990). The Generalised Unification Parser: Modelling
the Parsing of Notations. In: D. Diaper et al. (Eds): Human-Computer Interaction-
INTERACT '90, 951-957. Amsterdam: North-Holland.

Green, T.R.G. (1980). IF’s and THEN’s: Is Nesting just for the Birds? Software-
Practice and Experience, 10, 373-381.

Guilford, J.P., Fruchter, B. (1978). Fundamental Statistics in Psychology and Educa-
tion, London: McGraw-Hill.

Gustafson, D.A., Toledo, R.M., Courtney, R.E. & Temsamani, N. (1992). A Critique of
Validation/Verification Techniques for Software Development Measures. In: T.
Denvir, R. Herman & R.W. Whitty (Eds): Formal Aspects of Measurement. London:
Springer, 145-156.

Guttman, L. (1971). Measurement as Structural Theory. Psychometrika, 36, 329-347.

Halstead, M. H. (1977). Elements of Software Science. New York: Elsevier.

Harrison, R. (1993a). A Declarative Development Technique. Software Quality Man-
agement Conference, Southampton, 431-444.

Harrison, R. (1993b). Quantifying Internal Attributes of Functional Programs. Infor-
mation and Software Technology, 35(10), 554-560.

Henderson, P. (1986). Functional Programming, Formal Specification, and Rapid Pro-
totyping. IEEE Softw. Eng., SE 12(2), 241-250.

180

Henry, S. & Goff, R. (1989). Complexity Measurement of a Graphical Programming
Language. Software-Practice and Experience, 19(11), 1065-1088.

Holyer, I. (1991). Functional Programming with Miranda. London: Pittman.

Hudak, P. & Fasel, J.H. (1992). A Gentle Introduction to Haskell. ACM Sigplan No-
tices, 27(5), T1-T53.

Hudak, P. (1989). Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys, 21(3), 359-411.

Hughes, J. (1989). Why Functional Programming Matters. The Computer Journal,
32(2), 98-107.

Ince, D. (1989). Software Metrics. In: Kitchenham, B.A. & Littlewood, B. (Eds): Meas-
urement for Software Control and Assurance. London: Elsevier.

Jensen Partners International (1988). TopSpeed(TM) Modula-2.

Joosten, S.M.M. & Berg, K.G. van den (1990). Can Computer Programming be based
on Functional Programming. Memoranda Informatica 90-46. Enschede: University
of Twente. (a previous version of Chapter 2 in this thesis).

Joosten, S.M.M. (1989). The use of Functional Programming in Software Development.
Dissertation, Enschede: University of Twente.

Joosten, S.M.M. (Ed.), Berg, K.G. van den & Hoeven, G.F. van der (1993). Teaching
Functional Programming to First-Year Students. Journal of Functional Program-
ming, 3(1), 49-65. (This thesis Chapter 2).

Kaposi, A.A. (1990). Measurement Theory. In: J.A. McDermid (Ed.): Software Engi-
neer's Reference Book. Oxford: Butterworth/ Heinemann, Ch 12.

Khalil, O. E. & Clark, J. D. (1989). The Influence of Programmer's Cognitive Complex-
ity on Program Comprehension and Modification. Int. Journal Man-Machine Stud-
ies, 31, 219-236.

Kitchenham, B.A., Linkman, S.G. & Law, D.T. (1994). Critical Review of Quantitative
Assessment. Software Engineering Journal, March 1994, 43-53.

Koffman, E.B. (1988). Problem Solving and Structured Programming in Modula-2.
Reading, Massachusetts: Addison-Wesley.

Kosky, A. (1988). Declarative Languages for Advanced Information Technology. Jour-
nal Inf. Techn., 3(2), 110-118.

Kotz, S. & Johnson, N.L. (Eds) (1989). Encyclopaedia of Statistical Sciences. New
York: Wiley.

Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Foundations of Measure-
ment, Volume I. New York: Academic Press.

References 181

Leclercq, D.A. (1993). Validity, Reliability, and Acuity of Self-Assessment in Educa-
tional Testing. In: D.A. Leclercq & J.E. Bruno (Eds): Item Banking: Interactive
Testing and Self-Assessment. Berlin: Springer, 114-131.

Lindeman, R.H., Merenda, P. F. & Gold, R. Z. (1980). Introduction to Bivariate and
Multivariate Analysis. Glenview, Ill.: Scott, Foresman and Company.

Luce, R.D., Krantz, D.H., Suppes, P., & Tversky, A. (1990). Foundations of Measure-
ment. Volume III. San Diego: Academic Press.

Maki, D.P & Thompson M. (1973). Mathematical Models and Applications. Englewood
Cliffs: Prentice-Hall.

Mayrhauser, A. von (1994). Maintenance and Evolution of Software Products, In:
M.C.Yovits (Ed.): Advances in Computers, 39, 1-49.

McCabe, T. J. (1976). A Complexity Measure. IEEE Trans. Softw. Eng., SE 2(4), 308-
320.

McCarthy, J. (1960). Recursive Functions of Symbolic Expressions and Their Compu-
tation by Machine, Part I. Communications ACM, 3(4), 184-195.

McNamara, T.P., Miller, D.L. & Bransford, J.D. (1991). Mental Models and Reading
Comprehension. In: R. Barr, M.L. Kamil, P.B. Mosenthal & P.D. Pearson (Eds):
Handbook of Reading Research, Vol. II. New York: Longman.

Melton, A. (1992). Specifying Internal, External, and Predictive Software Metrics, In:
T. Denvir, R. Herman & R.W. Whitty (Eds): Formal Aspects of Measurement, Lon-
don: Springer, 194-208.

Melton, A.C., Gustafson, D.A., Bieman, J.M. & Baker, A.L. (1990). A Mathematical
Perspective for Software Measures Research. Softw. Eng. Journal, Sept, 246-254.

Michaelson, G. (1989). An Introduction to Functional Programming through Lambda
Calculus. Wokingham: Addison-Wesley.

Moerkerke, G., Roossink, H.J., Diepen, N.M. van, Berg, K.G. van den, Dijk, E.M.A.G.
van & Koppelman, H., (1992). Over Criteria voor het Beoordelen van Tentamen-
uitwerkingen in het vak Programmeren, [On criteria for the assessment of pro-
gramming assignments]. In: F.Mulder (Ed.): Congresbundel NIOC '90. Deventer:
Kluwer, 548-558.

Moher, T. & Schneider, G.M. (1982). Methodology and Experimental Research in
Software Engineering. Int. J. Man-Machine Studies, 16, 65-87.

Möller, K-H. & Paulish, D.J. (1993). An Empirical Investigation of Software Fault
Distribution, 1st International Software Metrics Symposium. Baltimore, Washing-
ton: IEEE, 82-90.

182

Myers, C., Clack, C. & Poon, E. (1993). Programming with Standard ML. New York:
Prentice Hall.

Myers, J.L. & Well, A.D. (1991). Research Design and Statistical Analysis. New York:
HarperCollins.

Neter, J., Wasserman,W. & Kutner, M.H. (1990). Applied Linear Statistical Models.
Regression, Analysis of Variance, and Experimental Designs. 3rd ed. Homewood:
Irwin.

Parnas, D.L. (1972). On the Criteria to be used in Decomposing Systems into Modules.
Communications ACM, 14(1), 1053-1058.

Petersen, G.M. van (1992). Validation of axiomatic structure metrics for comprehensi-
bility of Miranda type expressions. M.Sc. Thesis, Enschede: University of Twente.

Petre, M. & Winder, R. (1990). On Languages, Models and Programming Styles. The
Computer Journal, 33(2), 173-180.

Peyton Jones, S.L. (1987). The Implementation of Functional Programming Lan-
guages. New Jersey: Prentice-Hall.

Plasmeijer, R. & Eekelen, M. van (1993). Functional Programming and Parallel
Graph Rewriting. Wokingham: Addison-Wesley.

Pomberger, G. (1984). Software Engineering and Modula-2. Englewoods Cliffs, Pren-
tice-Hall.

Pressman, R.S. (1992). Software Engineering, A Practitioner's Approach. 3rd ed. New
York: McGraw-Hill.

Prometrix (1993). User and Installation Manual. Glasgow: Infometrix Software.

Qualms (1988). Wilson, L. & Leelasena, L., The Qualms Program Documentation,
Alvey Project SE/69. London: South Bank Polytechnic.

Reps, T. W. & Teitelbaum, T. (1989). The Synthesizer Generator: a System for Con-
structing Language-based Editors. New York: Springer.

Robbers, R.M.R. (1990). Software Metric Analysers based on Attribute Grammars.
The Metrics of Halstead and McCabe for Pascal and Miranda programs. Memo-
randa Informatica 90-88. Enschede: University of Twente.

Roberts, F.S. (1979). Measurement Theory with Applications to Decisionmaking, Util-
ity, and the Social Sciences. Encyclopaedia of Mathematics and Its Applications,
Volume 7. London: Addison-Wesley.

Robson, D.J., Bennett, K.H., Cornelius, B.J. & Munro, M. (1991). Approaches to Pro-
gram Comprehension. J. Systems Software, 14, 79-84.

References 183

Rombach, H.D., Basili, V.R. & Selby, R.W. (Eds) (1993). Experimental Software Engi-
neering: Critical Assessment and Future Directions. Berlin: Springer Verlag.

Sammet, J.E. (1981). High Level Language Metrics. In Perlis, A., Sayward, F. &
Shaw, M. (Eds): Software Metrics: An Analysis and Evaluation, 131-141. Cam-
bridge, Mass: MIT Press.

Samson, W. B., Dugard, P. I., Nevill, D. G., Oldfield, P. E. & Smith, A. W. (1989). The
Relationship between Specification and Implementation Metrics. In: B. A.
Kitchenham & B. Littlewood (Eds): Measurement for Software Control and Assur-
ance, 335-384. London: Elsevier.

Sanders, P. (1989). An Evaluation of Functional Programming for the Commercial
Environment. Br. Telecom. Technol. Journal, 7(3), 25-33.

Savitch, W.J. (1989). Functional Programming in Pascal? Journal of Pascal, Ada
Modula-2, 8(5), 35-41.

Scanlan, D.A. (1989). Structured Flowcharts outperform Pseudocode: an experimental
comparison. IEEE Software, Sept., 28-36.

Schach, S.R. (1990). Software Engineering. Boston: Irwin & Aksen.

Schneidewind, N.F. (1992). Methodology for Validating Software Metrics. IEEE
Trans. Softw. Eng., SE 18(5), 410-422.

Schwager, W. (1988). Theories of Measurement in Social Science: A Critical Review.
Thesis, Rotterdam: Erasmus University.

Shen, V. Y., Conte, S. D. & Dunsmore, H. E. (1983). Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support. IEEE Trans. Softw.
Eng., SE 9(2), 155-165.

Shepperd, M. & Ince, D. (1991). Algebraic Validation of Software Metrics, Lecture
Notes in Computer Science 550. Berlin: Springer, 343-363.

Shepperd, M. & Ince, D. (1993). Derivation and Validation of Software Metrics. Ox-
ford: Clarendon.

Shepperd, M. & Ince, D.C. (1994). A Critique of Three Metrics. J. Systems Software,
26, 197-210.

Springer, G. & Friedman, D.P. (1990). Scheme and the Art of Programming. Cam-
bridge, MA: MIT / New York: McGraw-Hill.

Suppes, P., Krantz, D.H., Luce, R.D., & Tversky, A. (1989). Foundations of Measure-
ment, Volume II. New York: Academic Press.

Tian, J. & Zelkowitz, M.V. (1992). A Formal Program Complexity Model and its Appli-
cation. J. Systems Software, 17, 253-266.

184

Turner, D. (1982). Recursion equations as a programming language. In: Darlington, J
(Ed.): Functional Programming and its Applications. Cambridge: Cambridge Uni-
versity Press, 1-28.

Turner, D.A. (1979). A New Implementation Technique for Applicative Languages.
Software - Practice and Experience, 9, 31-49.

Turner, D.A. (1985). Functional Programs as Executable Specifications. In: C.A.R.
Hoare & J.C. Shepherdson (Eds): Mathematical logic and programming languages.
Englewood Cliffs: Prentice Hall, 29-54.

Turner, D.A. (1986). An Overview of Miranda. Sigplan Notices, 21(12), 158-166.

Ullman, J.D. (1994). Elements of ML Programming. Englewood Cliffs: Prentice Hall.

Vessey, I. & Weber, R. (1984). Research on Structured Programming: An Empiricist's
Evaluation. Trans. Softw. Eng., SE 10(4), 397-407.

Watt, D.A. (1990). Programming Language Concepts and Paradigms. New York:
Prentice Hall.

Weyuker, E. J. (1988). Evaluating Software Complexity Measures. IEEE Trans.
Softw. Eng., SE 14(9), 1357-1365.

Whitty, R. (1988). Modelling Sequential Processes for Complexity Measurement, In:
J.J. Elliott, N.E. Fenton, S. Linkman, G. Markman & R. Whitty (Eds): Structure-
based Software Measurement. London: CSSE, South Bank Polytechnic, 185-196.

Whitty, R.W. (1992). Multi-dimensional Software Metrics, In: T. Denvir, R. Herman &
R.W. Whitty (Eds): Formal Aspects of Measurement. London: Springer, 116-141.

Wikstrom, Å. (1987). Functional Programming using Standard ML. Hemel Hemp-
stead: Prentice Hall.

Yourdon, E. & Constantine, L.L. (1979). Structured Design: Fundamentals of a Disci-
pline of Computer Program and Systems Design. Englewood Cliffs: Prentice-Hall.

Zuse, H. (1991). Software Complexity: Measures and Methods. Berlin: De Gruyter.

Zuse, H. (1992). Properties of Software Measures. Software Quality Journal, 1, 225-
260.

Zwiers, J. (1989). Compositionality, Concurrency and Partial Correctness. Lecture
Notes in Computer Science 321. Berlin: Springer.

References 185

 i

	General Introduction
	Teaching Functional Programming to First-Year � Students
	Introduction
	Motivation
	The students

	The computer programming course
	Functional Programming
	Imperative Programming
	Programming techniques
	Instructional material

	Evaluations
	Observations
	Problems
	Priority and associativity
	Type expressions
	Computational model

	Functional versus imperative programming

	Programming project
	Organisation
	Railway information system
	Experience
	Role of functional programming

	Conclusion

	Syntactic Complexity Metrics and the Readability � of Fu
	Introduction
	Software Metrics
	Halstead and McCabe Metrics
	Metrics for Pascal and Miranda
	Automated measurement

	Case Study
	Discussion

	Modelling Software for Structure Metrics
	Introduction
	Flowgraphs
	Structure graphs
	Structure metrics
	Two small languages
	Conclusion

	Static Analysis of Functional Programs
	Introduction
	Functional programs
	Example program
	Structure of function definitions

	Control-flow model
	Control-flow in function definitions
	Modelling control-flow in function definitions
	Control-flow graph and decomposition tree
	Flowgraph metrics

	Dependency model
	General callgraph
	Global callgraph
	Local callgraph
	Include callgraph
	Callgraph metrics

	Miranda analyser
	Prometrix
	Miranda front end
	Metric statistics

	Design of functional programs
	Pseudocode
	Design callgraph

	Conclusion

	Validation of Structure Metrics: A Case Study
	Introduction
	A framework for validation
	Structure metrics of type expressions
	Type expressions
	A grammar for type expressions
	Alternative grammars
	The internal axioms
	The external axioms
	The metric function

	Validation
	Method
	Procedure
	Results

	Discussion
	Conclusion

	Axiomatic Testing of Structure Metrics
	Introduction
	The case study
	The theoretical order
	The abstraction
	The containment relation
	Extension of the containment relation and ordinal scale

	The empirical order
	Global analysis of the empirical order
	Axiomatic analysis of the empirical order
	Deterministic axiomatic analysis
	Probabilistic axiomatic analysis

	Discussion

	Validation in the Software Metric Development � Process
	Introduction
	The representational measurement theory
	The validity network scheme
	The case study
	Overview

	The generative phase
	The substantive domain
	The conceptual domain
	The abstraction
	The containment relation and the metric function

	The methodological domain
	Validities in the generative phase

	The executive phase
	Calibration
	Prediction
	Discussion
	Validities in the executive phase

	The interpretative phase
	Validities in the interpretative phase

	Relation with other validation approaches

	Programmers' Performance on Structured � versus Nonstruc
	Introduction
	Function definitions
	Control-flow model
	Experiment
	Independent variables
	Dependent variables
	Experimental design
	Statistical model
	Hypotheses

	Subjects
	Objects
	Procedure
	Results
	Outliers
	Analysis of variance
	Time
	Correctness

	Discussion
	Conclusion

